GLM-4模型微调实践:解决预测结果生成问题
问题背景
在使用GLM-4模型进行微调训练时,开发者可能会遇到一个常见问题:当设置predict_with_generate参数为true时,训练过程可以正常完成,但预测阶段却无法生成预期的结果文件。这种情况通常发生在分类任务微调场景中,特别是当处理包含prompt-response格式的数据时。
核心问题分析
该问题的根源在于模型预测阶段的处理逻辑。在默认配置下,当输入数据中的labels字段被设置为None时(这是解决训练阶段KeyError问题的常见做法),预测流程会跳过结果生成步骤。这种设计虽然保证了训练过程的顺利进行,但却影响了预测功能的完整性。
解决方案实现
通过分析ChatGLM-6B项目的相关代码,我们可以找到有效的解决方案。以下是关键实现步骤:
- 训练结果处理:
 
metrics = train_result.metrics
metrics["train_samples"] = len(train_dataset)
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
- 预测阶段增强:
 
max_seq_length = ft_config.max_input_length + ft_config.max_output_length + 1
predict_results = trainer.predict(
    test_dataset,
    metric_key_prefix="predict",
    max_length=max_seq_length,
    do_sample=True,
    top_p=0.7,
    temperature=0.95
)
- 结果保存处理:
 
predictions = tokenizer.batch_decode(
    predict_results.predictions,
    skip_special_tokens=True,
    clean_up_tokenization_spaces=True
)
labels = tokenizer.batch_decode(
    predict_results.label_ids,
    skip_special_tokens=True,
    clean_up_tokenization_spaces=True
)
- 文件输出:
 
with open("output/generated_predictions.txt", "w", encoding="utf-8") as writer:
    for p, l in zip(predictions, labels):
        res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False)
        writer.write(f"{res}\n")
技术要点解析
- 
序列长度计算:max_seq_length的计算需要同时考虑输入和输出的最大长度,并预留一个token的空间。
 - 
生成参数设置:预测时使用do_sample=True配合top_p和temperature参数,可以控制生成结果的多样性和质量。
 - 
结果后处理:使用tokenizer的batch_decode方法对预测结果和标签进行解码,并清除特殊token和多余空格。
 - 
文件格式:输出采用JSON Lines格式,每行包含标签和预测结果的配对,便于后续分析。
 
实践建议
- 
对于分类任务,建议保持labels字段的完整性,而不是简单地设置为None。
 - 
在部署到生产环境前,应该对生成的预测结果进行充分验证,确保解码过程没有引入错误。
 - 
可以扩展结果文件的内容,加入原始prompt等信息,便于错误分析和模型改进。
 - 
考虑添加预测结果的评估指标计算,如准确率、F1值等,直接集成在输出流程中。
 
总结
通过实现上述解决方案,开发者可以完整地获取GLM-4模型微调后的训练和预测结果。这种方法不仅解决了预测结果生成的问题,还提供了标准化的输出格式,便于后续的模型评估和应用部署。理解这一流程对于有效使用GLM-4进行下游任务微调具有重要意义。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00