TypeBox 中如何访问非 TObject 类型的模式属性
在 TypeBox 项目中,开发者经常需要处理复杂的 JSON Schema 类型定义。本文将深入探讨如何访问不同类型模式中的属性,特别是针对非 TObject 类型(如联合类型和交叉类型)的处理方法。
问题背景
在构建基于声明的数据模型时,我们可能需要创建一个能够指向任何类型属性的通用引用类型。这个引用需要包含类型名称、属性名称和属性范围(即属性的类型定义)。
例如,考虑以下 LegalStatement 类型:
const LegalStatement = Type.Object({
legalEvent: Type.Union([core.Identifier, core.JsonPointer]),
record: Type.Union([core.Identifier, core.JsonPointer]),
value: Type.Any(),
created: core.DateTime,
effectiveFrom: core.TemporalPosition,
effectiveUntil: Type.Optional(core.TemporalPosition),
})
我们需要确保语句只能针对底层模型的现有属性,并能够指示属性的范围以便正确解析值。
初步解决方案
最初尝试的方案是针对 TObject 类型的:
const AttributeReference = <T extends TObject>(type: T, attribute: string) => {
const typeName = type.$id as string;
const attributeRange = type.properties[attribute].$id as string
return Type.Object({
type: Type.Literal(typeName),
attributeName: Type.Literal(attribute),
attributeRange: Type.Literal(attributeRange)
})
}
然而,这种方法存在局限性,因为它无法处理 TIntersect 或 TUnion 等非 TObject 类型,因为这些类型没有 properties 属性。
改进方案:使用 Type.Index
TypeBox 提供了 Type.Index 方法,可以访问嵌入在对象、联合、交叉和元组类型中的顶级类型。这个方法与 TypeScript 中的索引访问类型设计一致。
const AttributeReference = <T extends TSchema>(type: T, attributeName: string) => {
const typeName = type.$id as string;
const attributeRange = Type.Index(type, [attributeName]);
if (TypeGuard.IsNever(attributeRange)) {
throw new Error(`The attribute ${attributeName} does not exist on the type ${typeName}.`);
}
return Type.Object({
targetType: Type.Literal(typeName),
targetAttribute: Type.Literal(attributeName),
value: attributeRange
});
}
这个改进后的方案可以处理更广泛的类型,包括交叉类型和联合类型。Type.Index 方法会返回指定属性的类型定义,如果属性不存在则返回 Never 类型。
关于 $id 属性的思考
虽然上述方案解决了类型访问的问题,但开发者可能还希望获取属性类型的 $id(模式标识符)。然而,TypeBox 目前不将 $id 作为泛型参数跟踪,因为 TypeScript 无法从类型中派生变量名。
例如:
const Foo = Type.String({ $id: 'Foo' })
在这个例子中,'Foo' 是引用变量名,但不是泛型的。TypeScript 没有提供从类型中获取 'Foo' 作为字符串字面量的方法。
结论
通过使用 Type.Index 方法,我们能够构建一个更通用的属性引用解决方案,适用于各种 TypeBox 类型。虽然 $id 属性的内省目前受到限制,但 TypeBox 的类型系统提供了足够的灵活性来处理大多数实际场景。
对于需要在客户端和服务器之间共享模式信息的应用,如果双方使用相同的模式定义,模式标识符足以共享含义。如果模式没有 $id,也可以回退到模式本身的序列化表示。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00