Apache SkyWalking 在 Spring Cloud Gateway 中实现全局过滤器链路追踪的技术解析
背景介绍
在微服务架构中,Spring Cloud Gateway 作为 API 网关扮演着至关重要的角色,负责请求路由、负载均衡、安全控制等核心功能。而 Apache SkyWalking 作为一款优秀的分布式追踪系统,能够帮助开发者清晰地了解请求在微服务间的流转情况。然而,在实际应用中,我们发现当开发者在 Spring Cloud Gateway 中自定义 GlobalFilter 或 GatewayFilter 时,往往无法获取到 SkyWalking 生成的 traceId,这给分布式系统的监控和问题排查带来了不便。
问题分析
Spring Cloud Gateway 的过滤器机制是其核心功能之一,GlobalFilter 和 GatewayFilter 允许开发者在请求处理流程的各个阶段插入自定义逻辑。但在默认情况下,SkyWalking 的插件并未对这些过滤器的执行进行完整的追踪封装,导致在这些过滤器中无法直接获取到当前请求的 traceId 信息。
这种缺失会导致以下问题:
- 在过滤器中记录的日志无法与请求链路关联
- 无法在过滤器中添加自定义的追踪信息
- 当过滤器出现异常时,难以在分布式追踪系统中定位问题
解决方案
为了解决这一问题,我们可以通过扩展 SkyWalking 的插件机制,为 Spring Cloud Gateway 的过滤器添加追踪支持。核心思路是通过字节码增强技术,在过滤器执行前后注入追踪逻辑。
技术实现细节
-
类匹配机制:通过 HierarchyMatch 匹配所有实现了 GatewayFilter 接口的类,确保能够拦截到所有自定义过滤器。
-
方法拦截点:精确匹配过滤器的 filter 方法,特别是那些接收 ServerWebExchange 作为第一个参数的方法,这是 Spring Cloud Gateway 过滤器的标准签名。
-
上下文传递:通过检查 ServerWebExchange 实例,获取其中存储的上下文信息,确保追踪上下文的连续性。
-
堆栈深度管理:使用计数器来管理过滤器调用的嵌套层级,确保只在最外层创建 span 并在最外层关闭。
关键代码解析
拦截器的核心逻辑包括三个主要部分:
-
前置处理:在过滤器执行前,检查当前是否是入口调用(通过堆栈深度判断),如果是则创建本地 span 并继续上下文。
-
后置处理:在过滤器执行后,检查是否是出口调用,如果是则关闭当前 span。
-
异常处理:捕获过滤器执行过程中的异常,记录到当前 span 中。
实际应用效果
实现这一增强后,开发者可以在自定义过滤器中直接通过 SkyWalking 的 TraceContext 获取 traceId,例如:
@Component
public class CustomFilter implements GlobalFilter {
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
// 现在可以正常获取traceId了
String traceId = TraceContext.traceId();
// 自定义逻辑...
return chain.filter(exchange);
}
}
技术价值
这一改进为 Spring Cloud Gateway 的使用者带来了显著价值:
-
完整的请求追踪:现在可以在网关的整个处理流程中看到过滤器的执行情况,包括执行时间和可能出现的异常。
-
更好的可观测性:开发者可以在过滤器中记录与请求相关的关键信息,这些信息都会关联到同一个 traceId 下。
-
简化问题排查:当网关出现问题时,可以快速定位是哪个过滤器导致了问题,以及问题发生的具体上下文。
总结
通过对 Apache SkyWalking 的 Spring Cloud Gateway 插件进行扩展,我们成功解决了在自定义过滤器中无法获取 traceId 的问题。这一改进不仅完善了分布式追踪的覆盖范围,也提升了开发者在网关层进行问题诊断的效率。这种基于字节码增强的解决方案展示了 SkyWalking 强大的扩展能力,也为其他类似问题的解决提供了参考思路。
对于正在使用 Spring Cloud Gateway 和 SkyWalking 的团队,建议升级到包含此改进的版本,以获得更完整的可观测性支持。同时,开发者也可以基于这一模式,进一步扩展对其他网关功能的追踪支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00