SuperDiff 技术文档
本文档将为您提供关于如何安装、使用以及理解 SuperDiff Ruby gem 的详细信息。SuperDiff 是一个设计用于以熟悉和智能的方式显示任意类型两个对象之间差异的 Ruby gem。
1. 安装指南
在开始使用 SuperDiff 之前,请确保您的开发环境中安装了 Ruby。以下是安装 SuperDiff 的步骤:
# 使用 gem 命令安装 SuperDiff
gem install super_diff
确保您使用的是 Ruby 版本 3.x 或以上。
2. 项目的使用说明
SuperDiff 的主要目的是改进 RSpec 内置的差分能力。在 RSpec 中,当您使用 eq、match、include 或 have_attributes 这样的匹配器时,如果您尝试匹配的数据结构有差异,您会得到一个差分结果。但是,当您需要比较更接近“现实世界”的数据,如 API 或数据库数据时,RSpec 的输出可能并不理想。
SuperDiff 提供了一个差分引擎,该引擎知道如何计算任何两个数据结构之间的差异,并以一种合理的方式显示它们。
例如,如果您有一个复杂的哈希结构,并且想要比较两个哈希:
actual = {
customer: {
person: SuperDiff::Test::Person.new(name: "Marty McFly, Jr.", age: 17),
shipping_address: {
line_1: "456 Ponderosa Ct.",
city: "Hill Valley",
state: "CA",
zip: "90382"
}
},
items: [
{ name: "Fender Stratocaster", cost: 100_000, options: %w[red blue green] },
{ name: "Mattel Hoverboard" }
]
}
expected = {
customer: {
person: SuperDiff::Test::Person.new(name: "Marty McFly", age: 17),
shipping_address: {
line_1: "123 Main St.",
city: "Hill Valley",
state: "CA",
zip: "90382"
}
},
items: [
{ name: "Fender Stratocaster", cost: 100_000, options: %w[red blue green] },
{ name: "Chevy 4x4" }
]
}
# 在测试中使用 expect
expect(actual).to eq(expected)
使用 SuperDiff 之后,您将得到更清晰的差分结果。
3. 项目API使用文档
SuperDiff 的 API 使用非常直观。它主要扩展了 RSpec 的匹配器,以便在比较对象时提供更好的差分输出。您不需要直接调用 SuperDiff 的 API,而是通过 RSpec 的语法来使用它。
确保在您的 RSpec 配置中包含 SuperDiff:
# 在 spec_helper.rb 或 rails_helper.rb 中
RSpec.configure do |config|
config.include SuperDiff::RSpec::Matchers
end
这样,当您使用 RSpec 进行测试并且断言失败时,SuperDiff 将自动提供更详细的差分结果。
4. 项目安装方式
SuperDiff 可以通过 Ruby 的包管理工具 gem 进行安装。请按照以下步骤进行:
# 使用 gem 命令安装 SuperDiff
gem install super_diff
在安装 SuperDiff 之后,您可以在您的 Ruby 项目中导入并使用它。
本文档旨在帮助您更好地理解和利用 SuperDiff,以提高您的开发效率。如果您在使用过程中遇到任何问题或建议,欢迎创建一个 issue 来讨论。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00