MMDetection3D中nuScenes数据集预处理加速优化方案
2025-06-06 03:01:37作者:邵娇湘
在3D目标检测领域,nuScenes数据集是一个重要的基准数据集,包含丰富的多模态传感器数据。然而在使用MMDetection3D框架进行数据处理时,许多开发者遇到了数据集预处理速度极慢的问题,特别是生成Ground Truth数据库(create_groundtruth_database)阶段,处理速度可能低至0.4 task/s,导致整个预处理过程需要20小时以上。
问题分析
nuScenes数据集预处理缓慢的主要原因在于默认的单线程处理方式。当处理包含28,130个训练样本的大规模数据集时,单线程处理无法充分利用现代多核CPU的计算能力。特别是在生成GT数据库阶段,需要对大量点云数据进行处理、裁剪和保存,这些操作都是计算密集型任务。
解决方案
MMDetection3D框架中其实已经内置了多线程处理工具GTDatabaseCreater,但默认仅用于Waymo数据集。通过修改create_data.py脚本,我们可以将这个高效的多线程处理器应用于nuScenes数据集预处理。
关键修改点如下:
# 替换原有的单线程处理函数
# create_groundtruth_database(dataset_name, root_path, info_prefix,
# f'{info_prefix}_infos_train.pkl')
# 使用多线程GTDatabaseCreater
GTDatabaseCreater(
dataset_name,
root_path,
info_prefix,
f'{info_prefix}_infos_train.pkl',
relative_path=False,
with_mask=False,
num_worker=4).create()
优化效果
通过启用多线程处理后,nuScenes数据集的预处理时间从预估的20多小时大幅缩短至约3.5小时。性能提升的关键参数是num_worker,它控制着并行处理的工作线程数量。根据实际测试,设置为4个工作线程可以在大多数机器上取得良好的加速效果。
注意事项
- 工作线程数(num_worker)应根据实际CPU核心数进行调整,通常设置为CPU物理核心数的50-75%为宜
- 内存消耗会随工作线程数增加而线性增长,在内存有限的机器上需谨慎设置
- 预处理过程中建议监控系统资源使用情况,避免因资源耗尽导致失败
总结
对于大规模3D视觉数据集的处理,合理利用并行计算能力是提升效率的关键。MMDetection3D框架虽然提供了高效的多线程工具,但默认配置可能未针对所有数据集优化。开发者应当根据实际需求调整处理策略,充分发挥硬件性能。这一优化方案不仅适用于nuScenes数据集,其思路也可借鉴到其他3D视觉任务的预处理流程中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882