MMDetection3D中nuScenes数据集预处理加速优化方案
2025-06-06 16:25:59作者:邵娇湘
在3D目标检测领域,nuScenes数据集是一个重要的基准数据集,包含丰富的多模态传感器数据。然而在使用MMDetection3D框架进行数据处理时,许多开发者遇到了数据集预处理速度极慢的问题,特别是生成Ground Truth数据库(create_groundtruth_database)阶段,处理速度可能低至0.4 task/s,导致整个预处理过程需要20小时以上。
问题分析
nuScenes数据集预处理缓慢的主要原因在于默认的单线程处理方式。当处理包含28,130个训练样本的大规模数据集时,单线程处理无法充分利用现代多核CPU的计算能力。特别是在生成GT数据库阶段,需要对大量点云数据进行处理、裁剪和保存,这些操作都是计算密集型任务。
解决方案
MMDetection3D框架中其实已经内置了多线程处理工具GTDatabaseCreater,但默认仅用于Waymo数据集。通过修改create_data.py脚本,我们可以将这个高效的多线程处理器应用于nuScenes数据集预处理。
关键修改点如下:
# 替换原有的单线程处理函数
# create_groundtruth_database(dataset_name, root_path, info_prefix,
# f'{info_prefix}_infos_train.pkl')
# 使用多线程GTDatabaseCreater
GTDatabaseCreater(
dataset_name,
root_path,
info_prefix,
f'{info_prefix}_infos_train.pkl',
relative_path=False,
with_mask=False,
num_worker=4).create()
优化效果
通过启用多线程处理后,nuScenes数据集的预处理时间从预估的20多小时大幅缩短至约3.5小时。性能提升的关键参数是num_worker,它控制着并行处理的工作线程数量。根据实际测试,设置为4个工作线程可以在大多数机器上取得良好的加速效果。
注意事项
- 工作线程数(num_worker)应根据实际CPU核心数进行调整,通常设置为CPU物理核心数的50-75%为宜
- 内存消耗会随工作线程数增加而线性增长,在内存有限的机器上需谨慎设置
- 预处理过程中建议监控系统资源使用情况,避免因资源耗尽导致失败
总结
对于大规模3D视觉数据集的处理,合理利用并行计算能力是提升效率的关键。MMDetection3D框架虽然提供了高效的多线程工具,但默认配置可能未针对所有数据集优化。开发者应当根据实际需求调整处理策略,充分发挥硬件性能。这一优化方案不仅适用于nuScenes数据集,其思路也可借鉴到其他3D视觉任务的预处理流程中。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44