TensorFlow Lite Micro项目生成方法解析与解决方案
2025-07-03 17:55:18作者:羿妍玫Ivan
项目背景
TensorFlow Lite Micro(简称TFLM)是Google推出的专为微控制器和嵌入式设备设计的轻量级机器学习框架。作为TensorFlow Lite的精简版本,它能够在资源受限的环境中运行神经网络模型,为物联网设备、边缘计算等场景提供AI能力。
问题现象
在使用TFLM时,开发者可能会遇到一个常见问题:按照官方文档执行make -f tensorflow/lite/micro/tools/make/Makefile generate_projects命令时,系统提示"generate_projects"目标不存在,导致项目生成失败。
原因分析
经过深入调查,发现这一问题的根源在于:
- TFLM的构建系统已经更新,但文档可能没有及时同步
- 项目生成方式已经从Makefile迁移到了Python脚本
- 官方推荐的项目生成工具已改为
create_tflm_tree.py
解决方案
正确的项目生成方法如下:
- 使用Python脚本生成项目结构:
python3 tensorflow/lite/micro/tools/project_generation/create_tflm_tree.py \
--examples hello_world \
mybuild/hello_world_proj
- 手动补充必要文件:
- 将
array.cc和array.h从TensorFlow Lite源码目录复制到生成项目的对应位置
- 将
CMake配置示例
以下是构建TFLM项目的CMake配置示例:
cmake_minimum_required(VERSION 3.19)
project(test)
# 收集所有源文件
file(GLOB_RECURSE SRC
"signal/**/*.cc"
"signal/**/*.cpp"
"third_party/**/*.cc"
"third_party/**/*.cpp"
"tensorflow/**/*.cc"
"tensorflow/**/*.cpp"
)
# 创建主库
add_library(tlfm ${SRC})
# 设置包含目录
target_include_directories(tlfm PUBLIC
third_party/gemmlowp
${CMAKE_SOURCE_DIR}/
${CMAKE_SOURCE_DIR}/third_party/flatbuffers/include
${CMAKE_SOURCE_DIR}/third_party/gemmlowp
${CMAKE_SOURCE_DIR}/third_party/kissfft
${CMAKE_SOURCE_DIR}/third_party/ruy
)
# 创建示例程序
file(GLOB_RECURSE HELLO_WORLD_SRC "examples/*.cc" "examples/*.cpp")
add_executable(hello_world ${HELLO_WORLD_SRC})
# 配置示例程序
target_include_directories(hello_world PRIVATE ${CMAKE_SOURCE_DIR}/examples/hello_world)
target_link_libraries(hello_world PRIVATE tlfm)
技术要点
- 项目结构:TFLM项目通常包含核心库、第三方依赖和示例程序三大部分
- 依赖管理:需要特别注意flatbuffers、gemmlowp、kissfft等第三方库的正确包含
- 构建系统:现代TFLM项目推荐使用CMake而非Makefile进行构建
- 文件组织:生成的项目需要保持与原始项目相似的文件结构,特别是头文件路径
最佳实践建议
- 定期检查官方文档更新,关注构建系统的变更
- 对于新项目,优先使用
create_tflm_tree.py脚本生成基础结构 - 在CMake配置中,明确指定所有必要的包含路径
- 对于缺少的文件,可以从原始TensorFlow Lite源码中获取
- 保持项目结构与官方示例一致,便于后续维护和升级
通过以上方法,开发者可以顺利生成TFLM项目并开始嵌入式AI应用的开发工作。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
201
暂无简介
Dart
627
141
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
314
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
382
3.52 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
127
857