开源项目deeplearning-benchmark启动与配置教程
2025-04-26 17:57:06作者:薛曦旖Francesca
1. 项目目录结构及介绍
deeplearning-benchmark 项目的主要目录结构如下所示:
deeplearning-benchmark/
├── benchmarks/ # 存储deeplearning框架的性能测试脚本和基准数据
├── configs/ # 包含各种deeplearning框架的配置文件
├── models/ # 存储deeplearning模型定义和训练脚本
├── scripts/ # 包含项目启动和辅助脚本
├── tests/ # 用于测试和验证deeplearning框架性能的测试用例
├── tools/ # 提供了一些工具脚本,用于数据预处理、性能分析等
├── README.md # 项目说明文件
├── setup.sh # 项目环境配置脚本
└── requirements.txt # 项目依赖文件
benchmarks/:存放deeplearning框架的性能测试脚本和基准数据,可用于比较不同框架在相同模型和数据集上的性能。configs/:包含各种deeplearning框架的配置文件,这些文件定义了框架的运行参数和模型参数。models/:包含deeplearning模型的定义和训练脚本,这些模型用于在测试中评估性能。scripts/:提供了启动项目、执行测试和辅助管理等任务所需的脚本。tests/:包含了用于测试deeplearning框架性能的测试用例,可以帮助用户验证框架的性能。tools/:提供了数据预处理、性能分析等工具脚本。README.md:项目的主说明文件,包含了项目的描述、安装步骤、使用方法等。setup.sh:用于配置项目运行所需的环境。requirements.txt:列出了项目运行所依赖的Python包。
2. 项目的启动文件介绍
项目的启动主要通过 scripts/ 目录下的脚本进行,其中几个重要的启动脚本如下:
run_benchmark.sh:用于启动deeplearning框架的性能测试。launch_benchmark.py:用于启动特定框架的性能测试。
在启动之前,需要确保已经通过 setup.sh 脚本配置好了项目所需的环境。
例如,要启动一个性能测试,可以运行以下命令:
./scripts/run_benchmark.sh
该脚本会自动执行测试脚本,输出相关的性能数据。
3. 项目的配置文件介绍
项目的配置文件主要位于 configs/ 目录下,通常有如下几种类型的配置文件:
model_config.py:定义了deeplearning模型的结构和参数。dataset_config.py:定义了用于测试的数据集路径和参数。training_config.py:定义了训练过程中的参数,如学习率、批次大小等。
例如,如果需要修改deeplearning模型的结构,可以编辑 model_config.py 文件中的相应部分。下面是一个修改学习率的例子:
training_config = {
"optimizer": "SGD",
"learning_rate": 0.01,
}
在修改了配置文件之后,可以通过运行启动脚本来应用新的配置:
./scripts/run_benchmark.sh
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136