解决plotnine中geom_smooth使用loess方法时的TypeError问题
在使用Python数据可视化库plotnine时,许多数据分析师喜欢使用geom_smooth函数来为散点图添加平滑曲线。其中,loess(局部加权回归)方法因其灵活性而广受欢迎。然而,近期有用户报告在使用geom_smooth(method='loess')时遇到了"TypeError: asarray() got an unexpected keyword argument 'copy'"的错误。
问题现象
当用户尝试在plotnine中使用loess平滑方法时,系统会抛出TypeError异常,提示asarray()函数接收到了意外的copy参数。这个问题特别出现在以下环境配置中:
- plotnine版本:0.13.6
- scikit-misc版本:0.4.0
- numpy版本:1.26.0或1.26.4
值得注意的是,这个问题仅在使用loess方法时出现,其他平滑方法如lm(线性回归)或gam(广义可加模型)则工作正常。
问题根源
经过技术分析,这个问题源于scikit-misc库0.4.0版本中的兼容性问题。scikit-misc是plotnine实现loess平滑所依赖的一个底层库,它在0.4.0版本中修改了某些内部函数的参数传递方式,导致与numpy的asarray函数产生了冲突。
解决方案
目前有两种可行的解决方案:
-
降级scikit-misc到0.3.0版本: 这是最直接的解决方案。通过运行以下命令可以降级scikit-misc:
pip install scikit-misc==0.3.0这个版本已被证实与plotnine 0.13.6和numpy 1.26.x兼容。
-
等待scikit-misc更新: 根据仓库维护者的反馈,这个问题已经在scikit-misc的最新版本中修复。用户可以等待新版发布后升级解决。
推荐的环境配置
为了确保geom_smooth的loess方法正常工作,推荐使用以下版本组合:
- pandas:2.2.2
- plotnine:0.13.6
- scikit-misc:0.3.0
- numpy:1.26.4
- matplotlib:3.8.4
这个组合经过多位用户验证,能够稳定运行loess平滑功能。
技术细节
loess(局部加权回归)是一种非参数回归方法,它通过对数据点进行局部加权多项式拟合来生成平滑曲线。plotnine通过scikit-misc库实现这一功能。当scikit-misc调用numpy的asarray函数进行数据类型转换时,错误地传递了copy参数,导致了兼容性问题。
对于数据分析工作流来说,loess方法特别适合展示数据中的非线性趋势,因此解决这个兼容性问题对数据可视化工作至关重要。
总结
plotnine是一个强大的Python数据可视化工具,但在使用过程中可能会遇到依赖库的兼容性问题。当geom_smooth的loess方法出现TypeError时,最快捷的解决方案是降级scikit-misc到0.3.0版本。随着开源社区的持续维护,这些问题通常会很快得到解决,建议用户定期关注各库的更新日志。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00