首页
/ Seurat项目中的HTO标签解复用技术解析

Seurat项目中的HTO标签解复用技术解析

2025-07-01 12:57:01作者:龚格成

概述

在单细胞RNA测序(scRNA-seq)分析中,样本复用(multiplexing)是一项重要技术,它允许研究人员将多个样本混合在一起进行测序,从而降低成本并减少批次效应。Seurat作为单细胞分析的主流工具包,提供了基于Hashtag Oligo(HTO)技术的样本解复用(demultiplexing)功能。

HTO技术原理

Hashtag Oligo(HTO)是一种特殊的抗体标记技术,通过在细胞表面标记不同的寡核苷酸序列来区分不同样本来源的细胞。每个样本使用独特的HTO标记,在单细胞测序过程中,这些HTO序列会与细胞转录组一起被捕获和测序。

Seurat中的解复用流程

Seurat提供了完整的HTO数据处理流程,主要包括以下步骤:

  1. 数据准备:需要获取两个计数矩阵,一个是常规的基因表达矩阵,另一个是HTO计数矩阵。这两个矩阵的行(细胞)应该一一对应。

  2. 质量控制:对HTO数据进行初步筛选,去除低质量的细胞和异常值。

  3. 标准化:使用中心对数比(CLR)转换对HTO数据进行标准化处理。

  4. 降维与聚类:对标准化后的HTO数据进行主成分分析(PCA)和K最近邻(KNN)图构建,然后进行聚类。

  5. 样本分配:基于HTO表达模式将每个细胞分配到相应的样本。

  6. 双重检测:识别可能被错误标记为多个样本的细胞(双重体),并将其从分析中排除。

常见问题与解决方案

在实际操作中,研究人员可能会遇到数据链接失效等问题。这通常是由于数据存储位置变更导致的。遇到这种情况时,可以:

  1. 检查Seurat官方文档是否有更新
  2. 在GitHub仓库中搜索相关issue
  3. 联系项目维护者获取最新数据链接

最佳实践建议

  1. 在进行HTO分析前,建议先对HTO数据进行可视化检查,确保标记质量良好。

  2. 注意调整解复用参数,特别是双重检测的阈值,以适应不同实验条件。

  3. 解复用后,建议检查各样本的细胞分布情况,确保结果合理。

  4. 对于大型数据集,可以考虑使用Seurat的并行计算功能加速处理过程。

总结

Seurat提供的HTO解复用功能为多样本单细胞实验提供了强大的分析工具。通过合理使用这一功能,研究人员可以有效地处理混合样本数据,获得准确的单细胞表达谱。随着单细胞技术的不断发展,Seurat团队也在持续更新和完善相关功能,为用户提供更好的分析体验。

登录后查看全文

项目优选

收起
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
118
207
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
523
403
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
63
145
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
297
1.02 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
251
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
391
37
arkanalyzerarkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
39
40
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
583
41
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
693
91