Langroid项目中多检索结果融合排序的技术实现
背景介绍
在Langroid项目的DocChatAgent模块中,文档检索是一个核心功能。系统通过多种检索方法获取相关文档片段,包括语义检索(dense)、稀疏向量检索(sparse-embedding based)、关键词检索(lexical/keyword)以及模糊匹配(fuzzy)等方法。这些方法各自产生带有评分或排序的检索结果,但如何有效地整合这些结果成为一个技术挑战。
问题分析
在现有实现中,当配置了交叉编码器(cross-encoder)模型时,系统会对所有检索方法得到的文档片段进行统一重新排序,然后选取前k个最相关的片段。然而,在没有交叉编码器的情况下,系统只是简单地将所有检索结果合并后直接选取前k个,这可能导致最终选择的文档片段质量不高。
技术解决方案
为了解决这个问题,项目采用了融合排序(fusion ranking)策略,充分利用各种检索方法产生的评分和排序信息。具体实现包括以下关键步骤:
-
结果归一化处理:将不同检索方法得到的结果统一到相同的"评分空间",使得不同方法的评分可以相互比较。这通过两种方式实现:
- 基于倒序排名的评分(reciprocal rank):每个文档片段的评分为1/(rank + c)
- 最小-最大归一化(min-max-normalization)
-
RRF算法实现:项目通过PR #556实现了倒数排名融合(Reciprocal Rank Fusion, RRF)算法。RRF是一种简单但有效的融合排序方法,它通过将不同检索结果的排名进行倒数加权求和,得到最终的融合评分。
-
结果选择:在归一化处理后,系统可以根据融合评分选择前k个最相关的文档片段,确保在没有交叉编码器的情况下也能获得高质量的检索结果。
技术价值
这种融合排序策略具有以下优势:
- 充分利用多检索方法信息:避免了单一检索方法的局限性,综合各种方法的优势。
- 无需额外模型:在没有交叉编码器的情况下,仍能保证检索结果的质量。
- 计算效率高:相比使用大型交叉编码器进行重新排序,融合排序的计算开销更小。
- 可扩展性强:可以方便地集成新的检索方法到现有框架中。
总结
Langroid项目通过实现融合排序策略,特别是RRF算法,显著提升了在没有交叉编码器情况下的文档检索质量。这一技术改进不仅解决了实际问题,也为类似的多检索方法融合场景提供了有价值的参考方案。该实现展示了如何通过巧妙的算法设计,在不增加系统复杂度的前提下提升系统性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00