TransformerEngine中激活重计算与FP8量化配方的保存问题分析
2025-07-01 05:47:07作者:胡唯隽
背景介绍
在深度学习训练过程中,TransformerEngine项目采用了FP8量化技术来优化模型性能。其中,激活重计算(activation recomputation)是一种常见的内存优化技术,它通过在反向传播时重新计算前向传播的中间结果,而不是保存所有激活值,从而减少内存占用。
问题发现
在TransformerEngine的实现中,当启用激活重计算功能时(activation_recompute=True),发现FP8GlobalStateManager的上下文状态与首次计算激活时的状态不一致。具体表现为:
- 在反向传播调用时,FP8量化配方(recipe)没有被正确恢复
- 对于新的量化配方,特别是per-tensor当前缩放(current scaling)的情况,激活重计算会被跳过
- 默认的延迟缩放(delayed scaling)配方会被错误地使用
技术分析
FP8量化需要维护一系列状态信息,包括:
- 量化配方(recipe):定义了如何进行量化的参数和策略
- 缩放因子(scale)和最大值(amax):在延迟缩放策略中需要保存和恢复
- FP8启用状态:指示当前是否应该使用FP8量化
在正常的正向-反向传播过程中,这些状态会被自动保存和恢复。然而,在激活重计算场景下,由于计算流程的特殊性,量化配方没有被正确恢复,导致计算结果不一致。
解决方案
经过讨论,确定了以下解决方案原则:
- 不应该要求用户在调用
loss.backward()时必须手动创建FP8自动转换上下文 - 应该像保存量化器(quantizer)状态一样,在检查点中保存量化配方
- 在从检查点加载时,需要正确恢复FP8GlobalStateManager的状态
具体实现上,需要:
- 在保存检查点时同时保存量化配方和FP8启用状态
- 在激活重计算阶段恢复这些状态
- 确保恢复的状态与原始正向传播时完全一致
实现建议
一个可行的实现方案是扩展FP8GlobalStateManager的功能,使其能够:
- 在正向传播时记录当前的量化配方和FP8启用状态
- 将这些信息与激活值一起保存
- 在反向传播的激活重计算阶段恢复这些状态
这样无论loss.backward()在什么上下文中被调用,都能保证使用正确的量化参数进行重计算。
总结
TransformerEngine中FP8量化与激活重计算的交互是一个需要特别注意的环节。正确保存和恢复量化配方对于保证数值一致性至关重要。通过扩展状态管理器的功能,可以确保在激活重计算时使用与原始正向传播相同的量化参数,从而保证训练过程的正确性和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111