TransformerEngine中激活重计算与FP8量化配方的保存问题分析
2025-07-01 05:47:07作者:胡唯隽
背景介绍
在深度学习训练过程中,TransformerEngine项目采用了FP8量化技术来优化模型性能。其中,激活重计算(activation recomputation)是一种常见的内存优化技术,它通过在反向传播时重新计算前向传播的中间结果,而不是保存所有激活值,从而减少内存占用。
问题发现
在TransformerEngine的实现中,当启用激活重计算功能时(activation_recompute=True),发现FP8GlobalStateManager的上下文状态与首次计算激活时的状态不一致。具体表现为:
- 在反向传播调用时,FP8量化配方(recipe)没有被正确恢复
- 对于新的量化配方,特别是per-tensor当前缩放(current scaling)的情况,激活重计算会被跳过
- 默认的延迟缩放(delayed scaling)配方会被错误地使用
技术分析
FP8量化需要维护一系列状态信息,包括:
- 量化配方(recipe):定义了如何进行量化的参数和策略
- 缩放因子(scale)和最大值(amax):在延迟缩放策略中需要保存和恢复
- FP8启用状态:指示当前是否应该使用FP8量化
在正常的正向-反向传播过程中,这些状态会被自动保存和恢复。然而,在激活重计算场景下,由于计算流程的特殊性,量化配方没有被正确恢复,导致计算结果不一致。
解决方案
经过讨论,确定了以下解决方案原则:
- 不应该要求用户在调用
loss.backward()时必须手动创建FP8自动转换上下文 - 应该像保存量化器(quantizer)状态一样,在检查点中保存量化配方
- 在从检查点加载时,需要正确恢复FP8GlobalStateManager的状态
具体实现上,需要:
- 在保存检查点时同时保存量化配方和FP8启用状态
- 在激活重计算阶段恢复这些状态
- 确保恢复的状态与原始正向传播时完全一致
实现建议
一个可行的实现方案是扩展FP8GlobalStateManager的功能,使其能够:
- 在正向传播时记录当前的量化配方和FP8启用状态
- 将这些信息与激活值一起保存
- 在反向传播的激活重计算阶段恢复这些状态
这样无论loss.backward()在什么上下文中被调用,都能保证使用正确的量化参数进行重计算。
总结
TransformerEngine中FP8量化与激活重计算的交互是一个需要特别注意的环节。正确保存和恢复量化配方对于保证数值一致性至关重要。通过扩展状态管理器的功能,可以确保在激活重计算时使用与原始正向传播相同的量化参数,从而保证训练过程的正确性和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0135
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347