Sigma.js 3.0版本中节点渲染器的使用指南
2025-05-20 14:14:43作者:薛曦旖Francesca
Sigma.js作为一款优秀的网络图可视化库,在3.0版本中引入了强大的节点渲染器功能。本文将详细介绍如何正确使用这些渲染器,并分享一些实际开发中的经验。
节点渲染器的引入方式
在Sigma.js 3.0版本中,节点渲染器不再作为独立文件提供,而是被整合到了主库中。从3.0.0-beta.28版本开始,开发者可以直接通过Sigma.rendering对象访问各种节点渲染器。
需要注意的是,在3.0.0-beta.28版本中存在一个命名问题,全局变量被导出为"sigma"而非"Sigma",这个问题在3.0.0-beta.29版本中已经修复。如果使用beta.28版本,需要手动添加const Sigma = sigma;这行代码。
常用节点渲染器类型
Sigma.js 3.0提供了多种节点渲染器,每种都有其特定的用途:
- 图片节点渲染器(NodeImageProgram):允许将图片作为节点显示
- 边框节点渲染器(NodeBorderProgram):为节点添加边框效果
- 渐变节点渲染器(NodeGradientProgram):实现节点的渐变填充效果
- 饼图节点渲染器(NodePiechartProgram):将节点显示为饼图(注意当前版本可能存在bug)
实际应用示例
要使用这些渲染器,首先需要正确配置节点数据。以图片节点为例,节点数据需要包含两个关键属性:
type:指定渲染器类型,如"image"image:指定图片URL
graph.addNode("nodeId", {
x: 1,
y: 1,
size: 20,
type: "image",
image: "图片URL"
});
然后,在初始化Sigma实例时注册相应的渲染器:
const NodeImageProgram = Sigma.rendering.createNodeImageProgram();
const sigmaInstance = new Sigma(graph, containerElement, {
nodeProgramClasses: {
image: NodeImageProgram
}
});
开发注意事项
- 版本兼容性:确保使用的Sigma.js版本在3.0.0-beta.29或更高版本,以避免命名问题
- 渲染器组合:可以同时注册多个渲染器,通过节点的type属性决定使用哪个渲染器
- 性能考量:复杂的渲染器(如图片渲染器)可能会影响性能,在大规模图中应谨慎使用
- 错误处理:某些渲染器(如饼图渲染器)在当前版本可能存在bug,使用时需注意测试
总结
Sigma.js 3.0版本的节点渲染器功能为网络图可视化提供了更多可能性。通过合理使用这些渲染器,开发者可以创建出更加丰富多样的可视化效果。在实际开发中,建议始终使用最新版本,并充分测试各种渲染器的表现,以确保最佳的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137