Drake项目中测试输出文件保存机制的优化
在软件开发过程中,测试环节至关重要,特别是当测试在持续集成(CI)环境中失败时,开发人员需要足够的诊断信息来定位问题。本文将介绍Drake项目如何优化其测试输出文件的保存机制,特别是针对那些未在测试中显式声明的输出文件。
背景与挑战
在Drake项目的持续集成流程中,当测试失败时,开发人员通常只能获取到控制台输出的文本日志。然而,某些测试用例会生成二进制输出文件,如图像或压缩日志等,这些文件对于诊断复杂问题至关重要。在Bazel测试框架中,这类文件被称为"未声明输出"(undeclared outputs)。
传统上,这些二进制输出文件无法通过CI系统自动保存和提供下载,导致开发人员在调试时需要采取变通方法,如将二进制文件编码为文本格式。这种方法不仅效率低下,而且对于大型二进制文件不切实际。
技术实现方案
Drake项目团队设计了一套解决方案来保存这些测试输出文件:
-
文件收集机制:系统会自动收集测试生成的输出文件,特别是位于
bazel-testlogs目录下的outputs.zip文件及其内容。随着Bazel 8的更新,输出文件默认不再压缩,系统也相应调整以处理未压缩的输出文件。 -
智能保存策略:系统仅保存失败测试的输出文件,避免不必要地存储通过测试的数据。同时,特别排除了代码覆盖率(kcov)构建产生的输出文件,因为这些文件通常体积庞大且已有专门的覆盖率摘要上传。
-
渐进式部署:初期采用简化方案,将所有输出文件与构建关联上传,而非逐个测试关联。这种设计避免了复杂的Bazel JSON到CTest XML的转换问题。
实施过程中的挑战
在实施过程中,团队遇到了CDash系统的性能问题。当大量测试输出文件上传时,CDash的处理队列会出现积压和延迟。团队采取了以下应对措施:
-
短期修复:实施了热修复方案,暂时缓解队列压力,确保系统正常运行。
-
长期解决方案:向CDash项目提交了修复补丁,从根本上解决队列处理性能问题。该补丁将在CDash 3.10版本中正式发布。
未来展望
当前方案已能有效满足基本需求,团队计划在CDash 3.10发布后实施更完善的长期解决方案。这将包括:
- 更精细化的文件管理策略
- 与CDash更好的集成体验
- 可能的性能优化措施
通过这套测试输出保存机制,Drake项目显著提升了开发者在CI环境中诊断测试失败问题的效率,为项目质量保障提供了有力支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00