使用Supervision库处理YOLOv11s-seg ONNX模型的输出
2025-05-06 21:15:33作者:伍霜盼Ellen
背景介绍
在计算机视觉领域,YOLO系列模型因其高效的检测性能而广受欢迎。YOLOv11s-seg是YOLO系列中支持实例分割的版本,能够同时输出目标检测框和分割掩码。本文将详细介绍如何利用Supervision库处理YOLOv11s-seg ONNX模型的输出结果。
模型导出与输出结构
YOLOv11s-seg模型可以通过Ultralytics框架导出为ONNX格式。导出时需要注意几个关键参数:
model.export(
format="onnx",
nms=True,
data="data.yaml"
)
导出的ONNX模型有两个输出:
-
检测结果:形状为(1, 300, 38)
- 前4个值:边界框坐标(x1,y1,x2,y2)
- 第5个值:置信度分数
- 第6个值:类别ID
- 第7-38个值:32个分割掩码系数
-
掩码原型:形状为(1, 38, 160, 160)
输出处理实现
初始化模型
首先需要创建一个类来加载ONNX模型并处理输入输出:
class YOLOv11Processor:
def __init__(self, model_path, conf_thres=0.7, iou_thres=0.5):
self.conf_threshold = conf_thres
self.session = onnxruntime.InferenceSession(model_path)
self._setup_io_details()
输入预处理
输入图像需要调整为模型期望的尺寸并归一化:
def prepare_input(self, image):
self.orig_height, self.orig_width = image.shape[:2]
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
input_img = input_img / 255.0
input_img = input_img.transpose(2, 0, 1)
return input_img[np.newaxis, :, :, :].astype(np.float32)
输出后处理
处理模型输出是核心部分,包括:
- 过滤低置信度检测结果
- 提取边界框并调整到原始图像尺寸
- 生成分割掩码
def process_output(self, outputs):
predictions = np.squeeze(outputs[0], axis=0)
mask_protos = outputs[1]
# 过滤低置信度结果
conf_scores = predictions[:, 4]
valid = conf_scores > self.conf_threshold
predictions = predictions[valid]
if len(predictions) == 0:
return [], [], [], []
# 提取边界框
boxes = predictions[:, :4]
boxes = self._rescale_boxes(boxes)
# 提取类别ID
class_ids = predictions[:, 5].astype(np.int32)
# 生成分割掩码
masks = self._extract_masks(predictions, mask_protos)
return boxes, conf_scores[valid], class_ids, masks
掩码生成细节
掩码生成是通过32个掩码系数与32个掩码原型的加权求和实现的:
def _extract_masks(self, predictions, mask_protos):
seg_coeffs = predictions[:, 6:38]
mask_protos = mask_protos[0, :32, :, :]
# 计算加权和
masks = np.einsum('nc,chw->nhw', seg_coeffs, mask_protos)
# Sigmoid激活
masks = 1 / (1 + np.exp(-masks))
# 二值化
masks = masks > 0.5
# 调整到原始图像尺寸
final_masks = []
for mask in masks:
resized_mask = cv2.resize(
mask.astype(np.uint8) * 255,
(self.orig_width, self.orig_height),
interpolation=cv2.INTER_NEAREST
)
final_masks.append(resized_mask)
return np.array(final_masks)
使用Supervision可视化结果
处理完模型输出后,可以使用Supervision库进行可视化:
# 创建各种标注器
mask_annotator = sv.MaskAnnotator(color=sv.Color.GREEN)
box_annotator = sv.BoxAnnotator(thickness=2)
label_annotator = sv.LabelAnnotator(text_scale=0.7, text_thickness=2)
# 创建检测结果对象
detections = sv.Detections(
xyxy=boxes,
confidence=scores,
class_id=class_ids,
mask=masks
)
# 按顺序标注:掩码→边界框→标签
annotated_image = image.copy()
annotated_image = mask_annotator.annotate(annotated_image, detections)
annotated_image = box_annotator.annotate(annotated_image, detections)
annotated_image = label_annotator.annotate(annotated_image, detections)
常见问题与解决方案
-
边界框位置不正确:
- 确保正确地从模型输出中提取坐标
- 验证坐标缩放是否正确应用到原始图像尺寸
-
掩码显示异常:
- 检查掩码系数是否正确提取
- 确认掩码原型的使用是否正确
- 验证掩码调整大小时的插值方法
-
性能优化:
- 批量处理图像可以提高效率
- 考虑使用GPU加速ONNX推理
总结
本文详细介绍了如何使用Supervision库处理YOLOv11s-seg ONNX模型的输出。关键点包括正确解析模型输出结构、处理分割掩码以及使用Supervision进行可视化。通过这种方法,开发者可以轻松地将YOLOv11s-seg模型集成到自己的应用中,并实现高质量的实例分割结果可视化。
对于更复杂的应用场景,可以考虑进一步优化处理流程,例如实现异步处理、添加跟踪功能或集成更多后处理算法。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210