使用Supervision库处理YOLOv11s-seg ONNX模型的输出
2025-05-06 20:50:37作者:伍霜盼Ellen
背景介绍
在计算机视觉领域,YOLO系列模型因其高效的检测性能而广受欢迎。YOLOv11s-seg是YOLO系列中支持实例分割的版本,能够同时输出目标检测框和分割掩码。本文将详细介绍如何利用Supervision库处理YOLOv11s-seg ONNX模型的输出结果。
模型导出与输出结构
YOLOv11s-seg模型可以通过Ultralytics框架导出为ONNX格式。导出时需要注意几个关键参数:
model.export(
format="onnx",
nms=True,
data="data.yaml"
)
导出的ONNX模型有两个输出:
-
检测结果:形状为(1, 300, 38)
- 前4个值:边界框坐标(x1,y1,x2,y2)
- 第5个值:置信度分数
- 第6个值:类别ID
- 第7-38个值:32个分割掩码系数
-
掩码原型:形状为(1, 38, 160, 160)
输出处理实现
初始化模型
首先需要创建一个类来加载ONNX模型并处理输入输出:
class YOLOv11Processor:
def __init__(self, model_path, conf_thres=0.7, iou_thres=0.5):
self.conf_threshold = conf_thres
self.session = onnxruntime.InferenceSession(model_path)
self._setup_io_details()
输入预处理
输入图像需要调整为模型期望的尺寸并归一化:
def prepare_input(self, image):
self.orig_height, self.orig_width = image.shape[:2]
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
input_img = input_img / 255.0
input_img = input_img.transpose(2, 0, 1)
return input_img[np.newaxis, :, :, :].astype(np.float32)
输出后处理
处理模型输出是核心部分,包括:
- 过滤低置信度检测结果
- 提取边界框并调整到原始图像尺寸
- 生成分割掩码
def process_output(self, outputs):
predictions = np.squeeze(outputs[0], axis=0)
mask_protos = outputs[1]
# 过滤低置信度结果
conf_scores = predictions[:, 4]
valid = conf_scores > self.conf_threshold
predictions = predictions[valid]
if len(predictions) == 0:
return [], [], [], []
# 提取边界框
boxes = predictions[:, :4]
boxes = self._rescale_boxes(boxes)
# 提取类别ID
class_ids = predictions[:, 5].astype(np.int32)
# 生成分割掩码
masks = self._extract_masks(predictions, mask_protos)
return boxes, conf_scores[valid], class_ids, masks
掩码生成细节
掩码生成是通过32个掩码系数与32个掩码原型的加权求和实现的:
def _extract_masks(self, predictions, mask_protos):
seg_coeffs = predictions[:, 6:38]
mask_protos = mask_protos[0, :32, :, :]
# 计算加权和
masks = np.einsum('nc,chw->nhw', seg_coeffs, mask_protos)
# Sigmoid激活
masks = 1 / (1 + np.exp(-masks))
# 二值化
masks = masks > 0.5
# 调整到原始图像尺寸
final_masks = []
for mask in masks:
resized_mask = cv2.resize(
mask.astype(np.uint8) * 255,
(self.orig_width, self.orig_height),
interpolation=cv2.INTER_NEAREST
)
final_masks.append(resized_mask)
return np.array(final_masks)
使用Supervision可视化结果
处理完模型输出后,可以使用Supervision库进行可视化:
# 创建各种标注器
mask_annotator = sv.MaskAnnotator(color=sv.Color.GREEN)
box_annotator = sv.BoxAnnotator(thickness=2)
label_annotator = sv.LabelAnnotator(text_scale=0.7, text_thickness=2)
# 创建检测结果对象
detections = sv.Detections(
xyxy=boxes,
confidence=scores,
class_id=class_ids,
mask=masks
)
# 按顺序标注:掩码→边界框→标签
annotated_image = image.copy()
annotated_image = mask_annotator.annotate(annotated_image, detections)
annotated_image = box_annotator.annotate(annotated_image, detections)
annotated_image = label_annotator.annotate(annotated_image, detections)
常见问题与解决方案
-
边界框位置不正确:
- 确保正确地从模型输出中提取坐标
- 验证坐标缩放是否正确应用到原始图像尺寸
-
掩码显示异常:
- 检查掩码系数是否正确提取
- 确认掩码原型的使用是否正确
- 验证掩码调整大小时的插值方法
-
性能优化:
- 批量处理图像可以提高效率
- 考虑使用GPU加速ONNX推理
总结
本文详细介绍了如何使用Supervision库处理YOLOv11s-seg ONNX模型的输出。关键点包括正确解析模型输出结构、处理分割掩码以及使用Supervision进行可视化。通过这种方法,开发者可以轻松地将YOLOv11s-seg模型集成到自己的应用中,并实现高质量的实例分割结果可视化。
对于更复杂的应用场景,可以考虑进一步优化处理流程,例如实现异步处理、添加跟踪功能或集成更多后处理算法。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322