Hi-FT/ERD项目:从MMDetection 2.x到3.x的配置文件迁移指南
2025-06-19 23:25:45作者:管翌锬
前言
在目标检测领域,MMDetection是一个广泛使用的开源框架。随着Hi-FT/ERD项目的发展,我们注意到许多用户需要将现有的MMDetection 2.x配置文件迁移到3.x版本。本文将详细介绍这一迁移过程,帮助开发者顺利完成配置升级。
配置文件结构变化概述
MMDetection 3.x对配置文件结构进行了重大调整,主要变化包括:
- 数据预处理模块独立化
- 数据加载器配置重构
- 评估器与数据集解耦
- 训练流程模块化
- 优化器配置标准化
模型配置迁移
数据预处理模块
在3.x版本中,新增了DataPreprocessor模块,将原先分散在pipeline中的归一化和填充操作集中管理:
# 2.x版本配置
img_norm_cfg = dict(mean=[...], std=[...], to_rgb=True)
pipeline=[
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32)
]
# 3.x版本配置
model = dict(
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[...], std=[...],
bgr_to_rgb=True,
pad_size_divisor=32
)
)
这种变化使得图像预处理逻辑更加集中,便于维护和修改。
数据集与评估器配置
数据加载器重构
3.x版本对数据加载器进行了重大重构,使其更符合PyTorch原生DataLoader的设计理念:
# 2.x版本配置
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(...)
)
# 3.x版本配置
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(...)
)
主要改进包括:
- 分离训练、验证和测试数据加载器配置
- 支持更灵活的数据采样策略
- 增加持久化worker选项,减少重复创建进程的开销
数据增强管道变化
数据增强管道的主要变化包括:
- 移除
Normalize和Pad转换(已移至DataPreprocessor) - 合并
Collect和DefaultFormatBundle为PackDetInputs - 重构多尺度测试增强逻辑
# 2.x测试管道
test_pipeline = [
dict(type='MultiScaleFlipAug', ...)
]
# 3.x测试管道
test_pipeline = [
dict(type='Resize', ...),
dict(type='PackDetInputs', ...)
]
训练与评估配置
训练流程模块化
3.x版本将训练流程分解为多个可配置的组件:
# 2.x配置
runner = dict(type='EpochBasedRunner', max_epochs=12)
# 3.x配置
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=12,
val_interval=2
)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
这种模块化设计使得训练流程更加灵活,便于扩展自定义训练逻辑。
优化器配置
优化器包装器
3.x引入了优化器包装器概念,统一管理优化和梯度裁剪:
# 2.x配置
optimizer = dict(type='SGD', lr=0.02)
optimizer_config = dict(grad_clip=None)
# 3.x配置
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02),
clip_grad=None
)
学习率调度器
学习率调度配置更加贴近PyTorch原生方式:
# 2.x配置
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500
)
# 3.x配置
param_scheduler = [
dict(type='LinearLR', start_factor=0.001, end=500),
dict(type='MultiStepLR', milestones=[8,11])
]
检查点保存配置
检查点保存配置也进行了重构:
# 2.x配置
checkpoint_config = dict(interval=1)
evaluation = dict(save_best='auto')
# 3.x配置
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1,
save_best='auto'
)
)
迁移建议
- 逐步迁移:建议先迁移基础配置,再逐步添加高级功能
- 验证每个步骤:迁移后应验证模型训练和评估是否正常
- 参考官方示例:Hi-FT/ERD项目提供了完整的3.x配置示例
- 注意兼容性:某些2.x功能在3.x中可能有不同的实现方式
结语
MMDetection 3.x的配置文件重构使其更加模块化和灵活。通过本文的指导,Hi-FT/ERD项目用户可以顺利完成配置迁移,享受新版本带来的改进和性能提升。如果在迁移过程中遇到问题,建议查阅项目文档或社区讨论。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896