Hi-FT/ERD项目:从MMDetection 2.x到3.x的配置文件迁移指南
2025-06-19 14:51:52作者:管翌锬
前言
在目标检测领域,MMDetection是一个广泛使用的开源框架。随着Hi-FT/ERD项目的发展,我们注意到许多用户需要将现有的MMDetection 2.x配置文件迁移到3.x版本。本文将详细介绍这一迁移过程,帮助开发者顺利完成配置升级。
配置文件结构变化概述
MMDetection 3.x对配置文件结构进行了重大调整,主要变化包括:
- 数据预处理模块独立化
- 数据加载器配置重构
- 评估器与数据集解耦
- 训练流程模块化
- 优化器配置标准化
模型配置迁移
数据预处理模块
在3.x版本中,新增了DataPreprocessor模块,将原先分散在pipeline中的归一化和填充操作集中管理:
# 2.x版本配置
img_norm_cfg = dict(mean=[...], std=[...], to_rgb=True)
pipeline=[
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32)
]
# 3.x版本配置
model = dict(
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[...], std=[...],
bgr_to_rgb=True,
pad_size_divisor=32
)
)
这种变化使得图像预处理逻辑更加集中,便于维护和修改。
数据集与评估器配置
数据加载器重构
3.x版本对数据加载器进行了重大重构,使其更符合PyTorch原生DataLoader的设计理念:
# 2.x版本配置
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(...)
)
# 3.x版本配置
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(...)
)
主要改进包括:
- 分离训练、验证和测试数据加载器配置
- 支持更灵活的数据采样策略
- 增加持久化worker选项,减少重复创建进程的开销
数据增强管道变化
数据增强管道的主要变化包括:
- 移除
Normalize和Pad转换(已移至DataPreprocessor) - 合并
Collect和DefaultFormatBundle为PackDetInputs - 重构多尺度测试增强逻辑
# 2.x测试管道
test_pipeline = [
dict(type='MultiScaleFlipAug', ...)
]
# 3.x测试管道
test_pipeline = [
dict(type='Resize', ...),
dict(type='PackDetInputs', ...)
]
训练与评估配置
训练流程模块化
3.x版本将训练流程分解为多个可配置的组件:
# 2.x配置
runner = dict(type='EpochBasedRunner', max_epochs=12)
# 3.x配置
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=12,
val_interval=2
)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
这种模块化设计使得训练流程更加灵活,便于扩展自定义训练逻辑。
优化器配置
优化器包装器
3.x引入了优化器包装器概念,统一管理优化和梯度裁剪:
# 2.x配置
optimizer = dict(type='SGD', lr=0.02)
optimizer_config = dict(grad_clip=None)
# 3.x配置
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02),
clip_grad=None
)
学习率调度器
学习率调度配置更加贴近PyTorch原生方式:
# 2.x配置
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500
)
# 3.x配置
param_scheduler = [
dict(type='LinearLR', start_factor=0.001, end=500),
dict(type='MultiStepLR', milestones=[8,11])
]
检查点保存配置
检查点保存配置也进行了重构:
# 2.x配置
checkpoint_config = dict(interval=1)
evaluation = dict(save_best='auto')
# 3.x配置
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1,
save_best='auto'
)
)
迁移建议
- 逐步迁移:建议先迁移基础配置,再逐步添加高级功能
- 验证每个步骤:迁移后应验证模型训练和评估是否正常
- 参考官方示例:Hi-FT/ERD项目提供了完整的3.x配置示例
- 注意兼容性:某些2.x功能在3.x中可能有不同的实现方式
结语
MMDetection 3.x的配置文件重构使其更加模块化和灵活。通过本文的指导,Hi-FT/ERD项目用户可以顺利完成配置迁移,享受新版本带来的改进和性能提升。如果在迁移过程中遇到问题,建议查阅项目文档或社区讨论。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210