Hi-FT/ERD项目:从MMDetection 2.x到3.x的配置文件迁移指南
2025-06-19 03:12:34作者:管翌锬
前言
在目标检测领域,MMDetection是一个广泛使用的开源框架。随着Hi-FT/ERD项目的发展,我们注意到许多用户需要将现有的MMDetection 2.x配置文件迁移到3.x版本。本文将详细介绍这一迁移过程,帮助开发者顺利完成配置升级。
配置文件结构变化概述
MMDetection 3.x对配置文件结构进行了重大调整,主要变化包括:
- 数据预处理模块独立化
- 数据加载器配置重构
- 评估器与数据集解耦
- 训练流程模块化
- 优化器配置标准化
模型配置迁移
数据预处理模块
在3.x版本中,新增了DataPreprocessor
模块,将原先分散在pipeline中的归一化和填充操作集中管理:
# 2.x版本配置
img_norm_cfg = dict(mean=[...], std=[...], to_rgb=True)
pipeline=[
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32)
]
# 3.x版本配置
model = dict(
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[...], std=[...],
bgr_to_rgb=True,
pad_size_divisor=32
)
)
这种变化使得图像预处理逻辑更加集中,便于维护和修改。
数据集与评估器配置
数据加载器重构
3.x版本对数据加载器进行了重大重构,使其更符合PyTorch原生DataLoader的设计理念:
# 2.x版本配置
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(...)
)
# 3.x版本配置
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(...)
)
主要改进包括:
- 分离训练、验证和测试数据加载器配置
- 支持更灵活的数据采样策略
- 增加持久化worker选项,减少重复创建进程的开销
数据增强管道变化
数据增强管道的主要变化包括:
- 移除
Normalize
和Pad
转换(已移至DataPreprocessor) - 合并
Collect
和DefaultFormatBundle
为PackDetInputs
- 重构多尺度测试增强逻辑
# 2.x测试管道
test_pipeline = [
dict(type='MultiScaleFlipAug', ...)
]
# 3.x测试管道
test_pipeline = [
dict(type='Resize', ...),
dict(type='PackDetInputs', ...)
]
训练与评估配置
训练流程模块化
3.x版本将训练流程分解为多个可配置的组件:
# 2.x配置
runner = dict(type='EpochBasedRunner', max_epochs=12)
# 3.x配置
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=12,
val_interval=2
)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
这种模块化设计使得训练流程更加灵活,便于扩展自定义训练逻辑。
优化器配置
优化器包装器
3.x引入了优化器包装器概念,统一管理优化和梯度裁剪:
# 2.x配置
optimizer = dict(type='SGD', lr=0.02)
optimizer_config = dict(grad_clip=None)
# 3.x配置
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.02),
clip_grad=None
)
学习率调度器
学习率调度配置更加贴近PyTorch原生方式:
# 2.x配置
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500
)
# 3.x配置
param_scheduler = [
dict(type='LinearLR', start_factor=0.001, end=500),
dict(type='MultiStepLR', milestones=[8,11])
]
检查点保存配置
检查点保存配置也进行了重构:
# 2.x配置
checkpoint_config = dict(interval=1)
evaluation = dict(save_best='auto')
# 3.x配置
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1,
save_best='auto'
)
)
迁移建议
- 逐步迁移:建议先迁移基础配置,再逐步添加高级功能
- 验证每个步骤:迁移后应验证模型训练和评估是否正常
- 参考官方示例:Hi-FT/ERD项目提供了完整的3.x配置示例
- 注意兼容性:某些2.x功能在3.x中可能有不同的实现方式
结语
MMDetection 3.x的配置文件重构使其更加模块化和灵活。通过本文的指导,Hi-FT/ERD项目用户可以顺利完成配置迁移,享受新版本带来的改进和性能提升。如果在迁移过程中遇到问题,建议查阅项目文档或社区讨论。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193