YData Quality 开源项目教程
2024-09-13 17:12:40作者:邓越浪Henry
1. 项目介绍
YData Quality 是一个用于评估数据质量的开源 Python 库。它类似于机器学习中的 scikit-learn,通过多阶段的数据管道开发来评估数据质量。YData Quality 提供了一个全面的视角来捕捉数据的多个维度,并通过模块化的方式进行评估。
2. 项目快速启动
安装
首先,你需要安装 YData Quality 库。你可以通过 pip 来安装:
pip install ydata-quality
快速开始
以下是一个简单的示例,展示如何使用 YData Quality 来评估数据质量:
from ydata_quality import DataQuality
import pandas as pd
# 加载数据
df = pd.read_csv('path/to/your/dataset.csv')
# 创建 DataQuality 对象
dq = DataQuality(df=df)
# 运行测试并输出结果
results = dq.evaluate()
# 打印警告信息
print(results)
参数说明
在创建 DataQuality 对象时,你可以传入多个参数来定制评估过程。例如:
dq = DataQuality(df=df, label='target_column', random_state=42)
更多参数和详细说明可以参考官方文档。
3. 应用案例和最佳实践
案例1:数据重复检测
在数据处理过程中,数据重复是一个常见的问题。YData Quality 可以帮助你检测数据中的重复项。
from ydata_quality.duplicates import DuplicateChecker
# 创建 DuplicateChecker 对象
dc = DuplicateChecker(df=df)
# 运行评估
results = dc.evaluate()
# 打印结果
print(results)
案例2:缺失值分析
缺失值是数据质量评估中的另一个重要方面。YData Quality 可以帮助你分析数据中的缺失值。
from ydata_quality.missings import MissingValues
# 创建 MissingValues 对象
mv = MissingValues(df=df)
# 运行评估
results = mv.evaluate()
# 打印结果
print(results)
最佳实践
- 定期评估数据质量:建议在数据管道的每个阶段都进行数据质量评估,以确保数据的准确性和完整性。
- 定制评估参数:根据具体需求,调整评估参数以获得更精确的结果。
- 结合其他工具:YData Quality 可以与其他数据处理和分析工具(如 Pandas、NumPy 等)结合使用,以实现更复杂的数据质量管理。
4. 典型生态项目
YData Quality 可以与以下开源项目结合使用,以增强数据质量管理的能力:
- Pandas:用于数据处理和分析。
- NumPy:用于数值计算。
- scikit-learn:用于机器学习模型的构建和评估。
- Great Expectations:用于数据验证和测试。
通过结合这些工具,你可以构建一个完整的数据质量管理生态系统,确保数据的准确性和可靠性。
通过本教程,你应该已经掌握了 YData Quality 的基本使用方法,并了解了如何将其应用于实际的数据质量管理中。希望这能帮助你在数据科学项目中更好地管理和提升数据质量。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896