Wanderlust-Mega-Project项目Docker Compose部署架构解析
2025-07-10 23:25:47作者:董斯意
项目概述
Wanderlust-Mega-Project是一个采用现代化微服务架构的Web应用项目,通过Docker Compose实现了前后端分离部署。该项目包含了四个核心服务组件:MongoDB数据库、Redis缓存、后端API服务和前端应用,形成了一个完整的全栈应用解决方案。
Docker Compose文件结构解析
版本声明
version: "3.8"
该文件使用了Docker Compose 3.8版本,这是目前较为稳定且功能完善的版本,支持大多数现代Docker特性。
服务定义
MongoDB数据库服务
mongodb:
container_name: mongo-service
image: mongo:latest
volumes:
- ./backend/data:/data
ports:
- "27017:27017"
- 使用官方最新的MongoDB镜像
- 通过卷挂载将容器内的/data目录映射到宿主机的./backend/data目录,实现数据持久化
- 暴露标准MongoDB端口27017,便于开发调试时直接连接
后端API服务
backend:
container_name: backend
build: ./backend
env_file:
- ./backend/.env.docker
ports:
- "31100:8080"
depends_on:
- mongodb
- 采用构建方式而非直接使用镜像,便于开发时频繁修改
- 使用独立的.env.docker环境变量文件,与开发环境隔离
- 将容器内的8080端口映射到宿主机的31100端口
- 通过depends_on确保MongoDB服务先启动
前端应用服务
frontend:
container_name: frontend
build: ./frontend
env_file:
- ./frontend/.env.docker
ports:
- "5173:5173"
- 同样采用构建方式,支持前端代码的热更新
- 使用独立的环境变量配置文件
- 暴露5173端口,这是Vite等现代前端工具的默认开发端口
Redis缓存服务
redis:
container_name: redis-service
restart: unless-stopped
image: redis:7.0.5-alpine
expose:
- 6379
depends_on:
- mongodb
- 使用轻量级的Alpine版Redis 7.0.5镜像
- 配置了自动重启策略,增强服务稳定性
- 仅暴露6379端口给内部网络,不直接映射到宿主机
- 同样依赖MongoDB服务先启动
数据卷配置
volumes:
data:
定义了名为data的Docker卷,用于持久化存储数据,确保容器重启后数据不丢失。
部署架构设计特点
-
服务隔离:每个组件作为独立服务运行,符合微服务架构原则
-
环境隔离:通过独立的.env.docker文件管理各服务的Docker环境变量
-
端口规划:
- 后端API使用31100端口
- 前端开发服务器使用5173端口
- 数据库使用标准端口但仅限内部访问
-
依赖管理:通过depends_on明确定义服务启动顺序
-
持久化方案:MongoDB数据目录挂载+Redis数据卷双重保障
实际部署建议
-
开发环境:直接使用此配置,支持前后端热重载
-
生产环境:建议增加以下配置:
- 资源限制(CPU、内存)
- 健康检查
- 日志驱动配置
- 网络隔离
- 服务副本数
-
安全加固:
- 为MongoDB设置认证
- 限制Redis外部访问
- 使用TLS加密通信
常见问题排查
-
端口冲突:检查31100和5173端口是否被占用
-
构建失败:确保./backend和./frontend目录存在且包含正确的Dockerfile
-
环境变量问题:验证.env.docker文件是否存在且格式正确
-
服务启动顺序:虽然depends_on控制启动顺序,但不保证服务就绪,建议增加健康检查
通过这套Docker Compose配置,Wanderlust-Mega-Project实现了开发环境的一键部署,大大降低了环境搭建的复杂度,为开发者提供了开箱即用的开发体验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873