PyTorch Metric Learning 中 TripletMarginMiner 与 CrossBatchMemory 的内存优化实践
背景介绍
在深度学习领域,度量学习(Metric Learning)是一种重要的技术,它通过学习样本之间的相似性度量来构建特征空间。PyTorch Metric Learning 是一个优秀的开源库,提供了丰富的度量学习算法实现。其中,TripletMarginMiner 和 CrossBatchMemory 是两个常用的组件,分别用于三元组挖掘和跨批次记忆。
问题发现
在实际使用过程中,当结合使用 TripletMarginMiner 和 CrossBatchMemory 时,开发者可能会遇到一个棘手的问题:当标签和参考标签存储在 GPU 上,且 len(labels) * len(ref_labels) * len(ref_labels) > 2147483647 时,会抛出运行时错误。这是因为 PyTorch 的 torch.where() 函数(本质上是 .nonzero())不支持元素数量超过 INT_MAX 的张量。
技术分析
原实现的问题
原实现中的 get_all_triplets_indices 函数通过以下方式工作:
- 计算所有匹配对和差异对
- 创建一个三维张量来存储所有可能的三元组组合
- 使用
torch.where()找出有效的三元组索引
这种方法在内存使用上不够高效,特别是当参考标签数量较大时,会创建非常大的中间张量,导致内存不足或触发 PyTorch 的限制。
优化方案
经过深入分析,我们提出了一种更高效的实现方式:
- 预筛选锚点:首先找出那些至少有一个正样本和一个负样本的锚点,大幅减少后续计算量
- 按需计算:对于每个有效的锚点,单独计算其对应的正负样本对,避免创建大型中间张量
- 分批处理:将计算过程分解为多个小批次,降低内存峰值使用
性能对比
我们对新旧实现进行了详细的性能测试:
-
小批量大内存场景(批量21,内存10000):
- 新实现:4.73ms
- 原实现:120.99ms
- 性能提升约25倍
-
中等批量中等内存场景(批量512,内存2000):
- 新实现:92.61ms
- 原实现:116.38ms
- 性能提升约25%
-
大批量小内存场景(批量1000,内存1000):
- 新实现:130.77ms
- 原实现:56.52ms
- 性能下降约2.3倍
自适应策略
基于上述测试结果,我们最终采用了自适应策略:
def get_all_triplets_indices(labels, ref_labels=None):
# 计算张量大小
tensor_size = len(labels) * len(ref_labels) * len(ref_labels)
if tensor_size < torch.iinfo(torch.int32).max:
# 使用原实现(适合小规模数据)
...
else:
# 使用新实现(适合大规模数据)
...
这种策略能够根据输入数据规模自动选择最优的计算路径,既保证了小规模数据下的高效性,又解决了大规模数据下的内存问题。
实际应用建议
- 批量大小选择:当使用 CrossBatchMemory 时,建议保持较小的批量大小(如32-128),而增大内存库大小
- 类别数量影响:类别数量较少时,新实现的优势更明显,因为更容易找到正负样本对
- 硬件考虑:在显存有限的GPU上,新实现能支持更大的模型和数据集
总结
通过对 PyTorch Metric Learning 中三元组索引计算过程的优化,我们成功解决了大规模数据下的内存限制问题,并在多数常见场景下获得了显著的性能提升。这一改进已被合并到项目的2.5.0版本中,为度量学习研究者和实践者提供了更强大的工具支持。
对于开发者而言,理解这一优化背后的技术原理,有助于更好地配置训练参数,充分发挥硬件性能,提升模型训练效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00