Harvester项目中Kubelet内存回收机制的优化思考
2025-06-14 11:03:33作者:范靓好Udolf
在Harvester与Rancher集成的场景下,当启用harvester-baremetal-container-workload实验性功能时,系统当前缺乏对内存限制的有效管控机制。本文深入探讨这一技术挑战及其优化方案。
现状分析
Harvester作为基于Kubernetes的轻量级虚拟化管理平台,其内部RKE2 Kubelet默认配置了针对存储资源的回收策略:
--eviction-hard=imagefs.available<5%,nodefs.available<5%
--eviction-minimum-reclaim=imagefs.available=10%,nodefs.available=10%
这种配置主要关注容器镜像文件系统(imagefs)和节点文件系统(nodefs)的可用空间,但未包含内存资源的回收阈值设置。在混合部署虚拟机与裸金属容器工作负载的场景下,这种配置可能引发系统稳定性风险。
潜在风险
- 资源竞争加剧:虚拟机工作负载与容器工作负载共享节点物理资源,两者的内存需求可能同时激增
- OOM风险:缺乏主动内存回收机制可能导致系统触发Linux OOM Killer,造成非预期进程终止
- 性能抖动:内存压力下的被动回收可能导致服务质量下降
优化方案建议
建议扩展Kubelet的回收参数配置,增加内存相关的阈值设置:
--eviction-hard=imagefs.available<5%,nodefs.available<5%,memory.available<6Gi
--eviction-minimum-reclaim=imagefs.available=10%,nodefs.available=10%,memory.available=4Gi
参数说明
- eviction-hard:设置硬性驱逐阈值,当节点可用内存低于6GB时触发工作负载驱逐
- eviction-minimum-reclaim:设置最小回收量,每次至少回收4GB内存空间
技术实现考量
-
阈值设定原则:
- 应基于节点物理内存总量按比例设置
- 需考虑Harvester管理组件的基础内存需求
- 预留缓冲区应对突发内存需求
-
动态调整机制:
- 根据节点规格自动计算推荐值
- 支持通过配置参数覆盖默认值
-
监控与告警:
- 实现驱逐事件的可观测性
- 提供历史驱逐记录的查询接口
预期收益
- 系统稳定性提升:主动内存回收避免系统进入不可控状态
- 服务质量保障:有序的驱逐策略保障关键工作负载优先运行
- 运维复杂度降低:明确的回收策略减少人工干预需求
后续演进方向
- 基于工作负载类型(VM/容器)实现差异化的回收策略
- 引入内存压力的预测性调度机制
- 开发针对混合工作负载场景的资源配额管理系统
这一优化将使Harvester在支持裸金属容器工作负载时具备更完善的资源保障能力,为生产环境部署奠定坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
52
32