Apache Druid中MV_CONTAINS函数引发NullPointerException问题分析
问题背景
在Apache Druid 30.0.0版本升级过程中,用户发现使用MV_CONTAINS函数结合JSON_QUERY_ARRAY的SQL查询会抛出NullPointerException异常,而在29.0.0版本中该查询可以正常工作。这个问题不仅影响升级体验,也暴露了Druid在处理复杂类型数组时的潜在缺陷。
问题复现
用户使用Druid文档中的示例数据集进行测试,执行如下查询时出现问题:
SELECT
MV_CONTAINS(JSON_QUERY_ARRAY(agent, '$.type'), 'Browser'),
agent,
session
FROM "kttm"
在29.0.0版本中查询正常执行,但在30.0.0版本中会抛出NullPointerException。
技术分析
根本原因
该问题的根本原因在于Druid 30.0.0引入的一个优化逻辑存在缺陷。具体来说:
- MV_CONTAINS函数底层使用了array_contains表达式处理
- 当该表达式遇到复杂类型(COMPLEX)时,优化逻辑尝试将右侧参数转换为匹配数组元素类型
- JSON_QUERY_ARRAY无法确定提取元素的类型,导致类型转换失败
优化路径分析
Druid在处理array_contains表达式时,会对原始数组类型进行特殊优化处理。当检测到数组元素为基本类型时,会尝试优化处理路径。然而,对于JSON_QUERY_ARRAY返回的复杂类型,这种优化路径会导致类型转换失败。
解决方案
临时解决方案
对于遇到此问题的用户,可以采用以下替代查询方式:
SELECT
ARRAY_CONTAINS(JSON_VALUE(agent, '$.type' RETURNING VARCHAR ARRAY), 'Browser'),
agent,
session
FROM "kttm_nested_1"
这种写法不仅避免了问题,还具有更好的性能优势,因为JSON_VALUE表达式可以利用Druid的嵌套字段列优化。
长期修复方案
开发团队已经确定了永久修复方案,主要修改点是:
- 在优化路径中增加对复杂类型的检查
- 当遇到非基本类型或非基本类型数组时,直接返回原始表达式
- 确保array_overlap函数也进行相同修复
修复后的代码会在遇到复杂类型时跳过优化路径,转而使用逐行检查的类型处理方式。
最佳实践建议
-
优先使用ARRAY_函数:在处理JSON数组或数组列时,应优先使用ARRAY_CONTAINS而非MV_CONTAINS,因为MV_函数主要是为Druid旧版的多值字符串列设计的。
-
合理选择JSON处理函数:JSON_VALUE比JSON_QUERY/JSON_QUERY_ARRAY性能更优,特别是在Druid 28+版本中,因为它能利用嵌套字段列优化。
-
注意版本差异:Druid 28+版本对嵌套数组的存储进行了优化,旧版本创建的段可能需要回退到原始JSON处理方式。
总结
这个问题展示了Druid在处理复杂类型和优化路径时的一个边界情况。通过理解问题的本质,用户不仅可以应用临时解决方案,还能学习到Druid中JSON处理和数组操作的最佳实践。开发团队的修复将确保在保持性能优化的同时,正确处理各种数据类型场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00