Apache Druid中MV_CONTAINS函数引发NullPointerException问题分析
问题背景
在Apache Druid 30.0.0版本升级过程中,用户发现使用MV_CONTAINS函数结合JSON_QUERY_ARRAY的SQL查询会抛出NullPointerException异常,而在29.0.0版本中该查询可以正常工作。这个问题不仅影响升级体验,也暴露了Druid在处理复杂类型数组时的潜在缺陷。
问题复现
用户使用Druid文档中的示例数据集进行测试,执行如下查询时出现问题:
SELECT
MV_CONTAINS(JSON_QUERY_ARRAY(agent, '$.type'), 'Browser'),
agent,
session
FROM "kttm"
在29.0.0版本中查询正常执行,但在30.0.0版本中会抛出NullPointerException。
技术分析
根本原因
该问题的根本原因在于Druid 30.0.0引入的一个优化逻辑存在缺陷。具体来说:
- MV_CONTAINS函数底层使用了array_contains表达式处理
- 当该表达式遇到复杂类型(COMPLEX)时,优化逻辑尝试将右侧参数转换为匹配数组元素类型
- JSON_QUERY_ARRAY无法确定提取元素的类型,导致类型转换失败
优化路径分析
Druid在处理array_contains表达式时,会对原始数组类型进行特殊优化处理。当检测到数组元素为基本类型时,会尝试优化处理路径。然而,对于JSON_QUERY_ARRAY返回的复杂类型,这种优化路径会导致类型转换失败。
解决方案
临时解决方案
对于遇到此问题的用户,可以采用以下替代查询方式:
SELECT
ARRAY_CONTAINS(JSON_VALUE(agent, '$.type' RETURNING VARCHAR ARRAY), 'Browser'),
agent,
session
FROM "kttm_nested_1"
这种写法不仅避免了问题,还具有更好的性能优势,因为JSON_VALUE表达式可以利用Druid的嵌套字段列优化。
长期修复方案
开发团队已经确定了永久修复方案,主要修改点是:
- 在优化路径中增加对复杂类型的检查
- 当遇到非基本类型或非基本类型数组时,直接返回原始表达式
- 确保array_overlap函数也进行相同修复
修复后的代码会在遇到复杂类型时跳过优化路径,转而使用逐行检查的类型处理方式。
最佳实践建议
-
优先使用ARRAY_函数:在处理JSON数组或数组列时,应优先使用ARRAY_CONTAINS而非MV_CONTAINS,因为MV_函数主要是为Druid旧版的多值字符串列设计的。
-
合理选择JSON处理函数:JSON_VALUE比JSON_QUERY/JSON_QUERY_ARRAY性能更优,特别是在Druid 28+版本中,因为它能利用嵌套字段列优化。
-
注意版本差异:Druid 28+版本对嵌套数组的存储进行了优化,旧版本创建的段可能需要回退到原始JSON处理方式。
总结
这个问题展示了Druid在处理复杂类型和优化路径时的一个边界情况。通过理解问题的本质,用户不仅可以应用临时解决方案,还能学习到Druid中JSON处理和数组操作的最佳实践。开发团队的修复将确保在保持性能优化的同时,正确处理各种数据类型场景。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00