探索ClickHouse与PostgreSQL的完美结合:clickhouse_fdw
项目介绍
clickhouse_fdw 是一个开源的ClickHouse Foreign Data Wrapper(FDW),专为PostgreSQL设计。它允许用户在PostgreSQL中无缝访问和操作ClickHouse数据库中的数据。ClickHouse是一个高性能的列式数据库,而PostgreSQL则是一个功能强大的关系型数据库。通过clickhouse_fdw,用户可以在PostgreSQL中直接查询ClickHouse的数据,实现两者的深度集成。
项目技术分析
技术架构
clickhouse_fdw 通过HTTP接口与ClickHouse进行通信,利用libcurl和uuid库来实现数据传输和处理。它支持PostgreSQL 11到14版本,并且可以通过简单的命令行操作进行安装和配置。
安装与配置
安装clickhouse_fdw非常简单,只需按照以下步骤操作:
git clone git@github.com:ildus/clickhouse_fdw.git
cd clickhouse_fdw
mkdir build && cd build
cmake ..
make && make install
在CentOS 7上安装时,需要使用较新的编译器,如devtoolset-7,并确保安装了libcurl和uuid库。
使用示例
在ClickHouse中创建数据库和表后,可以通过以下步骤在PostgreSQL中访问这些数据:
CREATE EXTENSION clickhouse_fdw;
CREATE SERVER clickhouse_svr FOREIGN DATA WRAPPER clickhouse_fdw OPTIONS(dbname 'test_database');
CREATE USER MAPPING FOR CURRENT_USER SERVER clickhouse_svr OPTIONS (user 'default', password '');
IMPORT FOREIGN SCHEMA "test_database" FROM SERVER clickhouse_svr INTO public;
通过这些步骤,用户可以在PostgreSQL中直接查询ClickHouse的数据,并进行各种操作。
项目及技术应用场景
应用场景
-
数据仓库集成:在数据仓库环境中,ClickHouse通常用于存储和分析大规模数据,而PostgreSQL则用于处理复杂的事务和查询。通过
clickhouse_fdw,用户可以在同一个查询中同时访问这两个数据库,实现数据的统一管理和分析。 -
实时数据分析:在实时数据分析场景中,ClickHouse的高性能查询能力可以与PostgreSQL的灵活性相结合,帮助用户快速获取和分析实时数据。
-
多数据库联合查询:在需要跨多个数据库进行联合查询的场景中,
clickhouse_fdw可以简化查询流程,提高查询效率。
项目特点
特点
-
高性能:
clickhouse_fdw充分利用了ClickHouse的高性能查询能力,确保在PostgreSQL中也能快速访问和操作ClickHouse的数据。 -
易用性:安装和配置过程简单明了,用户只需几步即可完成集成,无需复杂的设置。
-
灵活性:支持多种参数配置,用户可以根据实际需求调整连接方式和数据处理方式。
-
开源免费:作为一个开源项目,
clickhouse_fdw完全免费,用户可以自由使用和修改源代码,满足个性化需求。
通过clickhouse_fdw,用户可以轻松实现ClickHouse与PostgreSQL的集成,充分发挥两者的优势,提升数据处理和分析的效率。无论是在数据仓库、实时分析还是多数据库联合查询场景中,clickhouse_fdw都能为用户带来显著的价值。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00