探索ClickHouse与PostgreSQL的完美结合:clickhouse_fdw
项目介绍
clickhouse_fdw 是一个开源的ClickHouse Foreign Data Wrapper(FDW),专为PostgreSQL设计。它允许用户在PostgreSQL中无缝访问和操作ClickHouse数据库中的数据。ClickHouse是一个高性能的列式数据库,而PostgreSQL则是一个功能强大的关系型数据库。通过clickhouse_fdw,用户可以在PostgreSQL中直接查询ClickHouse的数据,实现两者的深度集成。
项目技术分析
技术架构
clickhouse_fdw 通过HTTP接口与ClickHouse进行通信,利用libcurl和uuid库来实现数据传输和处理。它支持PostgreSQL 11到14版本,并且可以通过简单的命令行操作进行安装和配置。
安装与配置
安装clickhouse_fdw非常简单,只需按照以下步骤操作:
git clone git@github.com:ildus/clickhouse_fdw.git
cd clickhouse_fdw
mkdir build && cd build
cmake ..
make && make install
在CentOS 7上安装时,需要使用较新的编译器,如devtoolset-7,并确保安装了libcurl和uuid库。
使用示例
在ClickHouse中创建数据库和表后,可以通过以下步骤在PostgreSQL中访问这些数据:
CREATE EXTENSION clickhouse_fdw;
CREATE SERVER clickhouse_svr FOREIGN DATA WRAPPER clickhouse_fdw OPTIONS(dbname 'test_database');
CREATE USER MAPPING FOR CURRENT_USER SERVER clickhouse_svr OPTIONS (user 'default', password '');
IMPORT FOREIGN SCHEMA "test_database" FROM SERVER clickhouse_svr INTO public;
通过这些步骤,用户可以在PostgreSQL中直接查询ClickHouse的数据,并进行各种操作。
项目及技术应用场景
应用场景
-
数据仓库集成:在数据仓库环境中,ClickHouse通常用于存储和分析大规模数据,而PostgreSQL则用于处理复杂的事务和查询。通过
clickhouse_fdw,用户可以在同一个查询中同时访问这两个数据库,实现数据的统一管理和分析。 -
实时数据分析:在实时数据分析场景中,ClickHouse的高性能查询能力可以与PostgreSQL的灵活性相结合,帮助用户快速获取和分析实时数据。
-
多数据库联合查询:在需要跨多个数据库进行联合查询的场景中,
clickhouse_fdw可以简化查询流程,提高查询效率。
项目特点
特点
-
高性能:
clickhouse_fdw充分利用了ClickHouse的高性能查询能力,确保在PostgreSQL中也能快速访问和操作ClickHouse的数据。 -
易用性:安装和配置过程简单明了,用户只需几步即可完成集成,无需复杂的设置。
-
灵活性:支持多种参数配置,用户可以根据实际需求调整连接方式和数据处理方式。
-
开源免费:作为一个开源项目,
clickhouse_fdw完全免费,用户可以自由使用和修改源代码,满足个性化需求。
通过clickhouse_fdw,用户可以轻松实现ClickHouse与PostgreSQL的集成,充分发挥两者的优势,提升数据处理和分析的效率。无论是在数据仓库、实时分析还是多数据库联合查询场景中,clickhouse_fdw都能为用户带来显著的价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00