探索ClickHouse与PostgreSQL的完美结合:clickhouse_fdw
项目介绍
clickhouse_fdw 是一个开源的ClickHouse Foreign Data Wrapper(FDW),专为PostgreSQL设计。它允许用户在PostgreSQL中无缝访问和操作ClickHouse数据库中的数据。ClickHouse是一个高性能的列式数据库,而PostgreSQL则是一个功能强大的关系型数据库。通过clickhouse_fdw,用户可以在PostgreSQL中直接查询ClickHouse的数据,实现两者的深度集成。
项目技术分析
技术架构
clickhouse_fdw 通过HTTP接口与ClickHouse进行通信,利用libcurl和uuid库来实现数据传输和处理。它支持PostgreSQL 11到14版本,并且可以通过简单的命令行操作进行安装和配置。
安装与配置
安装clickhouse_fdw非常简单,只需按照以下步骤操作:
git clone git@github.com:ildus/clickhouse_fdw.git
cd clickhouse_fdw
mkdir build && cd build
cmake ..
make && make install
在CentOS 7上安装时,需要使用较新的编译器,如devtoolset-7,并确保安装了libcurl和uuid库。
使用示例
在ClickHouse中创建数据库和表后,可以通过以下步骤在PostgreSQL中访问这些数据:
CREATE EXTENSION clickhouse_fdw;
CREATE SERVER clickhouse_svr FOREIGN DATA WRAPPER clickhouse_fdw OPTIONS(dbname 'test_database');
CREATE USER MAPPING FOR CURRENT_USER SERVER clickhouse_svr OPTIONS (user 'default', password '');
IMPORT FOREIGN SCHEMA "test_database" FROM SERVER clickhouse_svr INTO public;
通过这些步骤,用户可以在PostgreSQL中直接查询ClickHouse的数据,并进行各种操作。
项目及技术应用场景
应用场景
-
数据仓库集成:在数据仓库环境中,ClickHouse通常用于存储和分析大规模数据,而PostgreSQL则用于处理复杂的事务和查询。通过
clickhouse_fdw,用户可以在同一个查询中同时访问这两个数据库,实现数据的统一管理和分析。 -
实时数据分析:在实时数据分析场景中,ClickHouse的高性能查询能力可以与PostgreSQL的灵活性相结合,帮助用户快速获取和分析实时数据。
-
多数据库联合查询:在需要跨多个数据库进行联合查询的场景中,
clickhouse_fdw可以简化查询流程,提高查询效率。
项目特点
特点
-
高性能:
clickhouse_fdw充分利用了ClickHouse的高性能查询能力,确保在PostgreSQL中也能快速访问和操作ClickHouse的数据。 -
易用性:安装和配置过程简单明了,用户只需几步即可完成集成,无需复杂的设置。
-
灵活性:支持多种参数配置,用户可以根据实际需求调整连接方式和数据处理方式。
-
开源免费:作为一个开源项目,
clickhouse_fdw完全免费,用户可以自由使用和修改源代码,满足个性化需求。
通过clickhouse_fdw,用户可以轻松实现ClickHouse与PostgreSQL的集成,充分发挥两者的优势,提升数据处理和分析的效率。无论是在数据仓库、实时分析还是多数据库联合查询场景中,clickhouse_fdw都能为用户带来显著的价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0115
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00