Apache Kyuubi 内存溢出问题分析与解决方案
问题背景
Apache Kyuubi是一个开源的分布式SQL引擎,它提供了JDBC接口来执行Spark SQL查询。在最新版本中,Kyuubi引入了一个新特性:通过FetchOrcStatement直接从ORC文件中获取查询结果,而不是通过传统的Spark结果收集方式。这个特性原本旨在提高大数据量查询的性能和效率。
问题现象
当用户执行大数据量查询时,特别是当查询结果被分成大量ORC文件时,Kyuubi的Driver进程会出现内存溢出(OOM)错误。这个问题在启用了自适应查询执行(AQE)或其他可能导致结果被分成多个文件的配置时尤为明显。
问题根源分析
通过深入分析,我们发现问题的根本原因在于当前实现方式中,Kyuubi会一次性初始化所有ORC文件的RecordReaderIterator。每个RecordReaderIterator在初始化时都会创建一个OrcMapreduceRecordReader,而这个Reader会预取一定数量的行数据到内存中。
当查询结果被分成大量ORC文件时,比如在测试案例中设置了40个executor实例,就会产生大量RecordReaderIterator同时存在于内存中,每个都持有预取的数据,从而导致Driver进程内存耗尽。
技术细节
-
内存消耗机制:
- 每个OrcMapreduceRecordReader在初始化时会预取数据
- 预取的数据量取决于ORC文件的存储格式和压缩方式
- 默认情况下,每个Reader会预取一个stripe的数据
-
问题代码路径:
- FetchOrcStatement在获取结果时,会为每个ORC文件创建一个RecordReaderIterator
- 这些Iterator被保存在内存中,直到所有数据被消费完毕
-
关键影响因素:
- ORC文件数量(与executor数量和AQE配置相关)
- 每个ORC文件的大小和内部结构
- Driver进程配置的内存大小
解决方案
针对这个问题,我们提出了一个优化方案:延迟初始化RecordReaderIterator。具体实现思路如下:
- 不再一次性初始化所有文件的RecordReaderIterator
- 改为按需初始化,即只有在客户端需要读取某个文件时才创建对应的Iterator
- 确保同一时间内存中只保持一个活跃的RecordReaderIterator
这种方案的优势在于:
- 显著降低Driver进程的内存压力
- 保持原有的功能完整性
- 对性能影响最小化
实现验证
该解决方案已经在实际环境中进行了验证:
- 使用TPCDS sf3000数据集中的catalog_returns表进行测试
- 设置40个executor实例以产生大量ORC文件
- 配置Driver内存为5GB
测试结果表明:
- 优化前:Driver因OOM而崩溃
- 优化后:查询成功执行,内存使用稳定
最佳实践建议
对于使用Kyuubi处理大数据量查询的用户,我们建议:
- 合理配置executor数量,避免产生过多小文件
- 根据查询结果大小适当调整Driver内存
- 考虑使用ORC文件的高级配置选项优化存储格式
- 监控Driver内存使用情况,及时发现潜在问题
总结
通过分析Kyuubi在处理ORC格式查询结果时的内存使用模式,我们识别并解决了一个可能导致Driver OOM的关键问题。这个优化不仅解决了内存溢出的风险,还为Kyuubi处理超大规模数据集提供了更可靠的基础。未来,我们还将继续优化结果获取机制,进一步提升系统的稳定性和性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00