Torchtitan项目中Fused AdamW优化器的性能优势分析
2025-06-19 19:03:16作者:幸俭卉
背景介绍
在深度学习训练过程中,优化器的选择对模型训练效率和最终性能有着重要影响。Torchtitan作为PyTorch生态中的一个重要项目,其默认优化器配置直接影响到大量用户的训练体验。近期,项目团队对Fused AdamW优化器进行了全面评估,发现其在不同并行策略下均能带来显著的性能提升。
Fused AdamW优化器技术解析
Fused AdamW是AdamW优化器的一个高效实现版本,通过算子融合技术将多个计算步骤合并为单个内核操作。这种优化主要带来两方面的优势:
- 减少内核启动开销:传统实现需要多次启动不同内核,而融合版本只需一次
- 提升内存访问效率:减少了中间结果的存储和读取操作
在8B参数规模的模型上,使用Fused AdamW平均可获得2.64%的模型FLOPs利用率(MFU)提升。这一提升意味着在相同硬件条件下,用户可以更快地完成模型训练,或者用更少的资源完成相同的训练任务。
全面兼容性验证
为确保Fused AdamW能够作为默认优化器,团队对其进行了全面的兼容性测试:
- 数据并行:验证了在数据切分训练场景下的稳定性
- 模型并行:测试了模型参数分布在多个设备时的工作情况
- 流水线并行:确认了在多阶段流水线中的表现
- 混合并行策略:评估了多种并行方式组合使用的兼容性
测试结果表明,Fused AdamW在所有并行策略下均能正常工作,且性能提升一致。这一发现为其作为默认优化器提供了坚实的技术基础。
实际应用建议
对于Torchtitan用户,团队建议:
- 在新项目中直接使用默认配置的Fused AdamW
- 现有项目升级时,可无缝切换到Fused AdamW而无需修改其他配置
- 对于特别大的模型,仍建议监控初期训练稳定性
值得注意的是,这种优化对用户完全透明,不需要任何额外的学习成本或代码修改,却能带来即时的性能收益。
未来展望
随着深度学习模型规模的不断扩大,优化器的效率优化将变得更加重要。Fused AdamW的成功实践也为其他优化器的类似优化提供了参考。团队表示将继续探索更多可能的优化方向,包括:
- 针对特定硬件架构的进一步优化
- 混合精度训练的深度支持
- 动态调整优化策略的可能性
这一改进体现了Torchtitan项目对性能优化的持续追求,也展示了PyTorch生态在实际应用中的不断成熟。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React实验项目的分类修正2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp博客页面工作坊中的断言方法优化建议4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17