Torchtitan项目中Fused AdamW优化器的性能优势分析
2025-06-19 12:01:32作者:幸俭卉
背景介绍
在深度学习训练过程中,优化器的选择对模型训练效率和最终性能有着重要影响。Torchtitan作为PyTorch生态中的一个重要项目,其默认优化器配置直接影响到大量用户的训练体验。近期,项目团队对Fused AdamW优化器进行了全面评估,发现其在不同并行策略下均能带来显著的性能提升。
Fused AdamW优化器技术解析
Fused AdamW是AdamW优化器的一个高效实现版本,通过算子融合技术将多个计算步骤合并为单个内核操作。这种优化主要带来两方面的优势:
- 减少内核启动开销:传统实现需要多次启动不同内核,而融合版本只需一次
- 提升内存访问效率:减少了中间结果的存储和读取操作
在8B参数规模的模型上,使用Fused AdamW平均可获得2.64%的模型FLOPs利用率(MFU)提升。这一提升意味着在相同硬件条件下,用户可以更快地完成模型训练,或者用更少的资源完成相同的训练任务。
全面兼容性验证
为确保Fused AdamW能够作为默认优化器,团队对其进行了全面的兼容性测试:
- 数据并行:验证了在数据切分训练场景下的稳定性
- 模型并行:测试了模型参数分布在多个设备时的工作情况
- 流水线并行:确认了在多阶段流水线中的表现
- 混合并行策略:评估了多种并行方式组合使用的兼容性
测试结果表明,Fused AdamW在所有并行策略下均能正常工作,且性能提升一致。这一发现为其作为默认优化器提供了坚实的技术基础。
实际应用建议
对于Torchtitan用户,团队建议:
- 在新项目中直接使用默认配置的Fused AdamW
- 现有项目升级时,可无缝切换到Fused AdamW而无需修改其他配置
- 对于特别大的模型,仍建议监控初期训练稳定性
值得注意的是,这种优化对用户完全透明,不需要任何额外的学习成本或代码修改,却能带来即时的性能收益。
未来展望
随着深度学习模型规模的不断扩大,优化器的效率优化将变得更加重要。Fused AdamW的成功实践也为其他优化器的类似优化提供了参考。团队表示将继续探索更多可能的优化方向,包括:
- 针对特定硬件架构的进一步优化
- 混合精度训练的深度支持
- 动态调整优化策略的可能性
这一改进体现了Torchtitan项目对性能优化的持续追求,也展示了PyTorch生态在实际应用中的不断成熟。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250