Torchtitan项目中Fused AdamW优化器的性能优势分析
2025-06-19 09:20:30作者:幸俭卉
背景介绍
在深度学习训练过程中,优化器的选择对模型训练效率和最终性能有着重要影响。Torchtitan作为PyTorch生态中的一个重要项目,其默认优化器配置直接影响到大量用户的训练体验。近期,项目团队对Fused AdamW优化器进行了全面评估,发现其在不同并行策略下均能带来显著的性能提升。
Fused AdamW优化器技术解析
Fused AdamW是AdamW优化器的一个高效实现版本,通过算子融合技术将多个计算步骤合并为单个内核操作。这种优化主要带来两方面的优势:
- 减少内核启动开销:传统实现需要多次启动不同内核,而融合版本只需一次
- 提升内存访问效率:减少了中间结果的存储和读取操作
在8B参数规模的模型上,使用Fused AdamW平均可获得2.64%的模型FLOPs利用率(MFU)提升。这一提升意味着在相同硬件条件下,用户可以更快地完成模型训练,或者用更少的资源完成相同的训练任务。
全面兼容性验证
为确保Fused AdamW能够作为默认优化器,团队对其进行了全面的兼容性测试:
- 数据并行:验证了在数据切分训练场景下的稳定性
- 模型并行:测试了模型参数分布在多个设备时的工作情况
- 流水线并行:确认了在多阶段流水线中的表现
- 混合并行策略:评估了多种并行方式组合使用的兼容性
测试结果表明,Fused AdamW在所有并行策略下均能正常工作,且性能提升一致。这一发现为其作为默认优化器提供了坚实的技术基础。
实际应用建议
对于Torchtitan用户,团队建议:
- 在新项目中直接使用默认配置的Fused AdamW
- 现有项目升级时,可无缝切换到Fused AdamW而无需修改其他配置
- 对于特别大的模型,仍建议监控初期训练稳定性
值得注意的是,这种优化对用户完全透明,不需要任何额外的学习成本或代码修改,却能带来即时的性能收益。
未来展望
随着深度学习模型规模的不断扩大,优化器的效率优化将变得更加重要。Fused AdamW的成功实践也为其他优化器的类似优化提供了参考。团队表示将继续探索更多可能的优化方向,包括:
- 针对特定硬件架构的进一步优化
- 混合精度训练的深度支持
- 动态调整优化策略的可能性
这一改进体现了Torchtitan项目对性能优化的持续追求,也展示了PyTorch生态在实际应用中的不断成熟。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110