Infinity项目中使用ONNX模型进行文本嵌入的性能优化实践
2025-07-04 04:43:33作者:胡易黎Nicole
引言
在自然语言处理领域,文本嵌入(Text Embedding)是一项基础而重要的技术,它将文本转换为向量表示,为下游任务如语义搜索、文本分类等提供支持。Infinity项目作为一个高效的文本嵌入引擎,支持使用ONNX格式的模型进行推理,本文将通过一个实际案例探讨其使用方法和性能优化要点。
ONNX模型准备
Infinity项目要求使用ONNX格式的模型文件。对于常见的Sentence Transformers模型,用户需要预先将其转换为ONNX格式。例如,对于"all-MiniLM-L6-v2"模型,可以使用HuggingFace上已经转换好的ONNX版本。
模型转换完成后,需要确保模型目录中包含以下关键文件:
- model.onnx:原始ONNX模型文件
- model_optimized.onnx:优化后的ONNX模型文件
- 其他相关配置文件
初始化嵌入引擎
使用Infinity项目进行文本嵌入时,首先需要初始化AsyncEmbeddingEngine。关键参数包括:
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
engine = AsyncEmbeddingEngine.from_args(
EngineArgs(
model_name_or_path="path/to/onnx_model",
device="cpu", # 或"cuda"使用GPU
batch_size=1,
lengths_via_tokenize=False,
model_warmup=True,
engine="optimum", # CPU使用optimum引擎
)
)
性能优化实践
在实际使用中,我们发现几个影响性能的关键因素:
- 引擎生命周期管理:引擎的启动和停止会消耗较多时间,应避免在每次推理时重复这一过程。
# 推荐方式:使用上下文管理器管理引擎生命周期
async with engine:
embeddings = await engine.embed(sentences)
# 或显式管理
await engine.astart()
# 执行多次推理
await engine.astop()
-
批量处理优势:Infinity项目在大批量文本处理时能展现更好的性能优势。对于单条短文本,传统Sentence Transformers可能表现更优。
-
预热模型:设置
model_warmup=True可以让引擎预先执行推理,建立性能基准。
性能对比分析
我们对比了Infinity(ONNX)和原生Sentence Transformers在CPU上的表现:
-
短文本单条处理:
- Sentence Transformers: ~0.1秒
- Infinity: ~1秒(包含引擎启动时间)
-
批量处理长文本:
- Infinity展现出更好的扩展性,随着批量增大,吞吐量显著提升
最佳实践建议
- 对于生产环境,保持引擎长期运行,避免频繁启停
- 根据实际场景调整batch_size参数
- 对于短文本少量请求,评估是否真的需要Infinity
- 使用warmup功能建立性能基准
- 考虑使用量化后的ONNX模型进一步提升性能
结论
Infinity项目为文本嵌入提供了高效的解决方案,特别是在批量处理和大文本场景下。通过合理的配置和使用方式,可以充分发挥其性能优势。开发者应根据实际应用场景,在模型选择、引擎管理和批处理策略等方面进行调优,以获得最佳的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248