Infinity项目中使用ONNX模型进行文本嵌入的性能优化实践
2025-07-04 08:42:56作者:胡易黎Nicole
引言
在自然语言处理领域,文本嵌入(Text Embedding)是一项基础而重要的技术,它将文本转换为向量表示,为下游任务如语义搜索、文本分类等提供支持。Infinity项目作为一个高效的文本嵌入引擎,支持使用ONNX格式的模型进行推理,本文将通过一个实际案例探讨其使用方法和性能优化要点。
ONNX模型准备
Infinity项目要求使用ONNX格式的模型文件。对于常见的Sentence Transformers模型,用户需要预先将其转换为ONNX格式。例如,对于"all-MiniLM-L6-v2"模型,可以使用HuggingFace上已经转换好的ONNX版本。
模型转换完成后,需要确保模型目录中包含以下关键文件:
- model.onnx:原始ONNX模型文件
- model_optimized.onnx:优化后的ONNX模型文件
- 其他相关配置文件
初始化嵌入引擎
使用Infinity项目进行文本嵌入时,首先需要初始化AsyncEmbeddingEngine。关键参数包括:
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
engine = AsyncEmbeddingEngine.from_args(
EngineArgs(
model_name_or_path="path/to/onnx_model",
device="cpu", # 或"cuda"使用GPU
batch_size=1,
lengths_via_tokenize=False,
model_warmup=True,
engine="optimum", # CPU使用optimum引擎
)
)
性能优化实践
在实际使用中,我们发现几个影响性能的关键因素:
- 引擎生命周期管理:引擎的启动和停止会消耗较多时间,应避免在每次推理时重复这一过程。
# 推荐方式:使用上下文管理器管理引擎生命周期
async with engine:
embeddings = await engine.embed(sentences)
# 或显式管理
await engine.astart()
# 执行多次推理
await engine.astop()
-
批量处理优势:Infinity项目在大批量文本处理时能展现更好的性能优势。对于单条短文本,传统Sentence Transformers可能表现更优。
-
预热模型:设置
model_warmup=True
可以让引擎预先执行推理,建立性能基准。
性能对比分析
我们对比了Infinity(ONNX)和原生Sentence Transformers在CPU上的表现:
-
短文本单条处理:
- Sentence Transformers: ~0.1秒
- Infinity: ~1秒(包含引擎启动时间)
-
批量处理长文本:
- Infinity展现出更好的扩展性,随着批量增大,吞吐量显著提升
最佳实践建议
- 对于生产环境,保持引擎长期运行,避免频繁启停
- 根据实际场景调整batch_size参数
- 对于短文本少量请求,评估是否真的需要Infinity
- 使用warmup功能建立性能基准
- 考虑使用量化后的ONNX模型进一步提升性能
结论
Infinity项目为文本嵌入提供了高效的解决方案,特别是在批量处理和大文本场景下。通过合理的配置和使用方式,可以充分发挥其性能优势。开发者应根据实际应用场景,在模型选择、引擎管理和批处理策略等方面进行调优,以获得最佳的性能表现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5