Cortex项目中Ingester组件禁用Chunk修剪的性能优化分析
背景与问题概述
在Cortex项目的分布式架构中,Ingester组件负责接收并临时存储时间序列数据。当查询请求到达时,Ingester需要从存储的chunk中提取符合查询时间范围的数据。在现有实现中,Ingester会对chunk进行修剪(trimming)操作,即解码整个chunk后丢弃查询时间范围外的样本点。
这种修剪机制存在明显的性能问题:即使查询引擎最终会过滤掉范围外的样本点,Ingester仍然需要消耗CPU资源解码整个chunk。这种双重过滤不仅浪费计算资源,还可能增加查询延迟。
技术原理分析
时间序列数据在Cortex中通常以chunk的形式存储,每个chunk包含一段时间范围内的多个样本点。当执行查询时,系统需要处理以下两个层面的过滤:
- Chunk级别过滤:确定哪些chunk可能包含查询时间范围内的数据
- 样本级别过滤:从候选chunk中提取实际落在查询时间范围内的样本点
当前的修剪机制在Ingester层面实现了样本级别的过滤,而实际上查询引擎(如PromQL引擎)也会执行相同的过滤操作。这种重复过滤导致不必要的CPU开销,特别是在处理大范围查询时更为明显。
优化方案设计
基于上述分析,优化方案的核心思想是禁用Ingester层的chunk修剪功能,将样本过滤完全交由查询引擎处理。这种优化与Thanos项目的类似优化(PR #7815)思路一致。
具体实现需要修改Ingester的查询处理逻辑,在创建select hints时明确禁用chunk修剪。这涉及以下关键点:
- 修改查询提示(select hints)的生成逻辑,设置禁用修剪的标志
- 确保查询引擎能够正确处理未修剪的chunk数据
- 保持查询结果的正确性不受影响
测试验证策略
为确保优化不影响系统功能,需要设计全面的测试方案:
- 功能正确性测试:验证禁用修剪前后查询结果的一致性
- 模糊测试(PromQLsmith):使用随机生成的查询语句验证各种边界情况
- 性能基准测试:测量优化前后的CPU使用率和查询延迟变化
特别是模糊测试,它能有效发现边缘案例,确保优化不会引入微妙的逻辑错误。测试应覆盖各种时间范围组合、不同的chunk大小以及复杂查询场景。
预期收益与风险评估
预期收益:
- 减少CPU使用率,特别是在高查询负载场景下
- 降低查询延迟,提升系统响应速度
- 简化数据处理流程,减少不必要的计算
潜在风险:
- 查询引擎可能需要处理稍大的数据集
- 极端情况下可能增加网络传输量
经过评估,这些风险在实际场景中影响有限,因为:
- 查询引擎的过滤效率通常很高
- 网络传输的chunk数量不变,只是内部样本未提前过滤
- 整体性能收益远大于潜在的微小开销
实施建议
对于希望应用此优化的团队,建议采取以下步骤:
- 在测试环境中验证功能正确性和性能提升
- 逐步在生产环境部署,监控关键指标
- 根据实际负载情况调整相关配置参数
- 持续观察长期运行效果,必要时进行调优
这项优化特别适合查询负载较重、CPU资源紧张的Cortex部署环境,能够在不改变系统功能的前提下获得明显的性能提升。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00