PyTorch Lightning中MPS设备种子设置问题解析
2025-05-05 07:52:40作者:殷蕙予
在使用PyTorch Lightning进行深度学习模型训练时,确保实验的可重复性是一个重要课题。本文将深入探讨在使用Apple Silicon芯片的MPS设备时如何正确设置随机种子,以及可能遇到的问题和解决方案。
随机种子的重要性
在机器学习实验中,随机种子控制着模型初始化、数据打乱等随机过程。设置相同的随机种子可以确保每次运行实验时获得相同的结果,这对于实验复现和结果验证至关重要。
传统CUDA设备的种子设置
对于NVIDIA GPU设备,通常使用以下代码设置随机种子:
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(42)
这段代码同时设置了CPU和所有GPU设备的随机种子,并确保CuDNN使用确定性算法。
MPS设备的特殊性
Apple Silicon芯片的MPS设备与传统的CUDA设备在架构上有显著差异。MPS设备不需要像CUDA那样分别设置每个设备的种子,因为:
- MPS设备通常被视为一个统一的计算单元
- 当前PyTorch的MPS后端没有实现
manual_seed_all方法 - MPS设备的随机数生成机制与CUDA不同
正确的MPS种子设置方法
对于MPS设备,只需使用以下简化版的种子设置函数:
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.backends.mps.is_available():
torch.mps.manual_seed(seed)
set_seed(42)
常见问题与解决方案
递归错误分析
在尝试设置种子时可能会遇到递归错误,这通常是由于:
- 在种子设置函数内部又调用了自身
- PyTorch内部对CUDA种子的自动处理与MPS设备产生冲突
解决方案是确保种子设置函数不会递归调用自身,并简化MPS设备的种子设置逻辑。
确定性算法设置
虽然MPS设备目前不完全支持所有确定性算法,但可以尝试设置:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
这些设置可能对MPS设备产生部分影响,但效果不如在CUDA设备上明显。
最佳实践建议
- 对于MPS设备,使用简化的种子设置函数
- 在代码中明确区分CUDA和MPS设备的处理逻辑
- 定期检查PyTorch版本更新,因为MPS支持在不断改进
- 对于关键实验,考虑在CPU上验证结果以确保完全确定性
通过遵循这些指导原则,可以在Apple Silicon设备上获得更好的实验可重复性,同时充分利用MPS设备的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K