使用 Watchtower 自动更新 Docker 容器基础镜像教程
1. 项目目录结构及介绍
对于 watchtower 这个 Docker 容器自动化更新工具,由于它是一个命令行应用而非一个包含多文件的项目,所以没有典型的目录结构。它的主要工作是通过一个单独的 Docker 镜像来运行。不过,当你运行该容器时,可以挂载宿主机的 /var/run/docker.sock 到容器内以便访问 Docker 服务。
启动命令示例:
docker run --detach \
--name watchtower \
--volume /var/run/docker.sock:/var/run/docker.sock \
containrrr/watchtower
这里涉及的目录结构主要是宿主机上的 Docker 相关路径:
/var/run/docker.sock: Docker守护进程套接字,允许容器与 Docker 服务通信。
2. 项目启动文件介绍
Watchtower 的启动文件其实就是运行 docker run 命令。上述命令中,我们指定了镜像 (containrrr/watchtower) 并以 detached 模式 (-d) 运行容器。此外,通过 -v 参数将宿主机的 Docker 套接字挂载到容器内,使得 Watchtower 可以监控并更新其他正在运行的容器。
如果需要设置特定的选项或配置(例如通知、私有注册表等),可以通过环境变量传递给 docker run 命令。例如,设置定时扫描间隔:
docker run --detach \
--name watchtower \
--env WATCHTOWER_SCHEDULE="0 */6 * * *" \
--volume /var/run/docker.sock:/var/run/docker.sock \
containrrr/watchtower
上述命令设置了每六小时检查一次更新的计划任务。
3. 项目配置文件介绍
Watchtower 不依赖于本地配置文件来运行,但你可以通过 Docker 容器的环境变量来设定配置。以下是一些常用的环境变量:
WATCHTOWER_NOTIFICATIONS: 启用或禁用通知,如 Slack 或 其他即时通讯工具。WATCHTOWER_INCLUDE_LABELS: 根据指定标签选择要更新的容器。WATCHTOWER_EXCLUDE_LABELS: 排除具有特定标签的容器不进行更新。WATCHTOWER_SCHEDULE: 设置定时任务来检查更新,例如0 */6 * * *表示每六小时检查一次。
要使用这些配置,只需在运行 docker run 命令时添加相应的环境变量即可。例如,启用 Slack 通知并设置扫描间隔:
docker run --detach \
--name watchtower \
--env WATCHTOWER_NOTIFICATIONS=slack \
--env WATCHTOWER_SLACK_WEBHOOK_URL=<your_slack_webhook_url> \
--env WATCHTOWER_SCHEDULE="0 */6 * * *" \
--volume /var/run/docker.sock:/var/run/docker.sock \
containrrr/watchtower
请注意替换 <your_slack_webhook_url> 为你的实际 Slack Webhook URL。
更多可用的环境变量和高级配置,请参考 Watchtower 的官方文档。
以上就是关于 Watchtower 的基本介绍,希望对你在管理和自动化更新 Docker 容器上有所帮助。如有任何疑问或需要进一步的帮助,请查阅项目官方文档或社区资源。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00