LoRA-Scripts项目中的PyTorch 2.6安全策略与VAE模型加载问题解析
问题背景
在LoRA-Scripts项目中使用PyTorch 2.6版本进行模型训练时,用户遇到了无法加载自定义VAE模型的问题。错误信息显示这是由于PyTorch 2.6版本引入的安全策略变更导致的,具体表现为默认启用了weights_only=True参数,限制了模型加载时的全局变量范围。
技术分析
PyTorch 2.6版本为了提高安全性,对torch.load()函数的行为做出了重要修改:
-
默认参数变更:
weights_only参数从默认值False改为True,这意味着PyTorch默认只允许加载包含张量数据的模型文件,禁止执行任意代码。 -
安全限制:当遇到包含不被允许的全局变量(如示例中的
pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint)时,会抛出UnpicklingError异常。 -
错误提示:PyTorch提供了两种解决方案:
- 显式设置
weights_only=False(但需确保模型来源可信) - 使用
torch.serialization.add_safe_globals()或上下文管理器将特定类加入白名单
- 显式设置
解决方案比较
针对这一问题,社区和项目开发者提出了几种不同的解决方案:
-
环境变量法:设置
TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD = "1"可以强制PyTorch使用旧版加载行为。这种方法简单直接,但可能带来潜在安全风险。 -
模型格式转换:将模型转换为safetensors格式。这是最安全的解决方案,因为safetensors格式专门设计为只包含张量数据,不执行任何代码。
-
代码修改:如ComfyUI项目所做的,通过捕获异常并尝试不同加载策略的方式实现兼容性。这种方法较为复杂,但能提供更好的用户体验。
最佳实践建议
对于LoRA-Scripts项目用户,我们推荐以下处理流程:
-
优先转换模型格式:使用工具将VAE模型转换为safetensors格式,这是最安全可靠的长期解决方案。
-
临时解决方案:在确保模型来源可信的情况下,可以使用环境变量临时解决问题,但应注意这仅适用于开发和测试环境。
-
版本兼容性:考虑在项目文档中明确标注PyTorch版本要求,或提供自动检测和处理的代码逻辑。
技术影响评估
这一变更对深度学习社区的影响较大:
-
安全性提升:有效防止了通过恶意模型文件执行任意代码的风险。
-
兼容性挑战:许多现有模型文件需要更新或转换格式才能正常工作。
-
开发习惯改变:开发者需要更加注意模型来源的可信度,并考虑采用更安全的模型存储格式。
结论
PyTorch 2.6的安全策略变更代表了深度学习框架向更安全方向发展的趋势。虽然短期内可能带来一些兼容性问题,但从长远来看,推动使用safetensors等更安全的模型格式对社区是有益的。LoRA-Scripts项目的用户应逐步适应这一变化,优先考虑将模型转换为安全格式,而不是依赖临时解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00