GraphRAG 开源项目指南
项目目录结构及介绍
GraphRAG 是由微软研究团队开发的一个基于图的检索增强生成系统。该系统旨在利用大型语言模型(LLMs)从非结构化文本中提取有意义的结构化数据。下面是其基本的目录结构概述:
-
src: 此目录包含了项目的主要源代码,包括处理文本、实体抽取、关系构建、以及图的社区检测等功能模块。
-
docs: 文档目录,存放了项目说明、API文档、用户指南等重要资料,帮助开发者理解和使用GraphRAG。
-
examples: 提供了一些示例代码或脚本,帮助新用户快速上手,理解如何在实际场景中应用GraphRAG。
-
notebooks: 包含Jupyter Notebook文件,用于演示如何交互式地使用GraphRAG进行数据分析和图建模。
-
tests: 单元测试相关文件,确保项目功能稳定可靠。
-
setup.py, pyproject.toml: 这些是Python项目的标准配置文件,用来定义项目依赖和构建指令。
-
README.md: 快速入门指导,提供了关于项目的基本信息,如何开始,以及关键概念的简要说明。
-
CONTRIBUTING.md: 贡献指南,为有兴趣贡献代码的开发者提供参与项目开发的规则和流程。
项目的启动文件介绍
虽然具体的启动文件可能因版本更新而有所不同,通常在GraphRAG项目中,启动过程涉及多个步骤而非单一的启动文件。用户可能需要通过以下方式来启动项目或服务:
- 初始化和配置:首先,依据
docs中的指引进行环境设置和配置文件的编辑。 - 主运行脚本:项目可能有一个主要的入口点,如
main.py或者通过特定的命令行工具(例如graphrag-cli),这将作为启动数据处理流程的起点。
启动流程一般需要通过命令行指定必要的参数,比如配置文件路径、数据源位置等,具体细节需参考最新的文档和示例脚本。
项目的配置文件介绍
配置文件在GraphRAG中扮演着重要角色,常见的配置文件可能是以.toml, .yaml, 或者 .json格式存在,位于项目的根目录或者特定的配置子目录下。这些配置文件通常涵盖以下几个方面:
- 数据源配置: 指定输入数据的位置和格式。
- 模型参数: 包括使用的大型语言模型的细节、训练或调优设置。
- 索引策略: 如何切分文本单元、实体抽取的参数等。
- 集群与图构建: 如Leiden算法的参数设置,用于社区检测的配置。
- 查询与检索配置: 定义查询时如何使用图结构和其他辅助数据。
一个典型的配置示例可能会包括数据库连接字符串、处理工作流的开关标志、性能调整参数等。用户应当详细阅读提供的文档,了解每项配置的具体意义并根据自己的需求进行调整。
请注意,上述目录结构和启动、配置部分的内容基于常规开源项目结构和提供的描述性文本综合而成,实际情况请参照项目最新发布的文档和源码。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00