Rust项目Miri在Windows平台上的构建性能问题分析
问题背景
在Rust语言的Miri项目中,开发团队发现了一个影响Windows平台构建性能的问题。具体表现为在执行"many-seeds"测试时,Windows平台每次迭代需要约15秒,而其他平台(如macOS和Linux)仅需不到1秒。经过调查,发现这是由于Windows平台上Miri被反复重建导致的。
问题现象
在Windows平台上,每次运行测试时都会触发以下构建过程:
- 首先执行
cargo build --bins --tests构建Miri - 然后执行
cargo run运行测试 - 但
cargo run会再次触发Miri的完整重建
而在Unix-like系统上,同样的操作不会导致重复构建,系统能够正确缓存不同配置的构建结果。
技术分析
构建缓存机制差异
Rust的构建工具Cargo在Unix系统上使用硬链接来管理不同构建配置的缓存。当构建同一个crate的不同配置时,Cargo会:
- 为每个配置生成独立的二进制文件(带有哈希后缀)
- 将
target/debug/下的可执行文件作为硬链接指向最新构建的版本
Windows系统虽然也支持硬链接,但在此场景下缓存机制似乎未能正常工作。具体表现为:
- 构建带
--tests和不带--tests的配置会互相覆盖缓存 - 每次切换构建配置都会导致完整重建
依赖指纹变化
通过启用Cargo的详细日志,发现问题的直接原因是ctrlc依赖项的指纹发生了变化:
UnitDependencyInfoChanged {
old_name: "ctrlc",
old_fingerprint: 6202229392602597251,
new_name: "ctrlc",
new_fingerprint: 4374262352119191711
}
ctrlc是一个跨平台库,在Windows上有特殊的依赖项(windows-sys crate)。理论上,Cargo应该能够缓存不同特性集的构建结果,但在此场景下未能实现。
解决方案与优化
Miri团队采取了以下措施来缓解此问题:
-
重构测试执行方式:修改"many-seeds"测试的实现,避免在测试过程中频繁切换构建配置。现在所有种子测试使用相同的构建配置执行,大幅减少了不必要的重建。
-
构建流程优化:通过统一构建参数,确保整个测试过程中只使用一种构建配置,消除了配置切换导致的缓存失效问题。
经验总结
这个案例揭示了跨平台开发中一些值得注意的问题:
-
平台特性差异:即使功能上等价,不同操作系统在实现细节(如文件系统行为)上的差异可能导致性能表现大不相同。
-
构建系统行为:理解构建工具在不同平台上的具体行为对于优化构建流程至关重要。
-
测试设计考量:在设计跨平台测试时,需要考虑各平台的特性,避免因测试实现方式导致平台间性能差异。
通过这次问题排查和解决,Miri项目不仅修复了Windows平台的性能问题,还改进了测试框架的设计,使其更加健壮和高效。这对于其他Rust项目的跨平台开发也提供了有价值的参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00