【亲测免费】 深度强化学习与图神经网络在路由问题中的应用教程
2026-01-22 04:54:03作者:范垣楠Rhoda
1. 项目介绍
本项目是基于深度强化学习(DRL)和图神经网络(GNN)解决路由问题的官方代码。该项目旨在通过结合强化学习的决策能力和深度学习的表示能力,解决组合优化问题,特别是旅行商问题(TSP)、容量约束车辆路径问题(CVRP)和多仓库容量约束车辆路径问题(MDCVRP)。
项目的主要贡献在于设计了一个残差边图注意力网络(Residual Edge-Graph Attention Network, Residual E-GAT),该网络不仅考虑了节点信息,还考虑了边信息,从而更好地捕捉图结构中的空间邻接关系。此外,项目还使用了Transformer模型作为解码器,以预测未选择节点的概率分布。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境中安装了以下依赖库:
- torch 1.4.0
- torch-geometric 1.5.0
- torch-cluster 1.5.2
- torch-scatter 2.0.3
- torch-sparse 0.6.0
- torch-spline-conv 1.2.0
您可以使用以下命令安装这些依赖库:
pip install torch==1.4.0 torch-geometric==1.5.0 torch-cluster==1.5.2 torch-scatter==2.0.3 torch-sparse==0.6.0 torch-spline-conv==1.2.0
代码克隆
首先,克隆项目代码到本地:
git clone https://github.com/Lei-Kun/DRL-and-graph-neural-network-for-routing-problems.git
cd DRL-and-graph-neural-network-for-routing-problems
快速启动
以下是一个简单的示例代码,展示了如何使用该项目解决TSP问题:
import torch
from models import TSPModel
from utils import load_data
# 加载数据
data = load_data('data/tsp_20_1.txt')
# 初始化模型
model = TSPModel(input_dim=2, hidden_dim=128, num_layers=3)
# 前向传播
output = model(data)
# 打印结果
print(output)
3. 应用案例和最佳实践
应用案例
-
旅行商问题(TSP):通过本项目,您可以轻松解决经典的TSP问题。项目提供了预训练模型和数据集,您可以直接使用这些资源进行实验和验证。
-
容量约束车辆路径问题(CVRP):对于CVRP问题,项目同样提供了相应的模型和数据集。您可以通过调整模型参数和输入数据,解决不同规模的CVRP问题。
-
多仓库容量约束车辆路径问题(MDCVRP):MDCVRP是CVRP的扩展,涉及多个仓库和车辆。本项目提供了一个扩展框架,您可以根据需要进行定制和优化。
最佳实践
- 数据预处理:在输入数据之前,确保数据格式正确,并且节点和边的信息完整。
- 模型调优:根据具体问题的规模和复杂度,调整模型的隐藏层维度、层数等参数,以获得最佳性能。
- 结果分析:在模型训练和推理过程中,记录关键指标和结果,以便后续分析和优化。
4. 典型生态项目
- PyTorch Geometric:本项目依赖于PyTorch Geometric库,该库提供了丰富的图神经网络工具和模型,是图神经网络研究和应用的重要工具。
- OpenAI Gym:虽然本项目不直接依赖于OpenAI Gym,但您可以将其与Gym结合,创建一个强化学习环境,以更好地模拟和解决实际问题。
- TensorBoard:使用TensorBoard进行模型训练的可视化,可以帮助您更好地监控和分析模型的训练过程。
通过结合这些生态项目,您可以进一步扩展和优化本项目的功能和性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178