Longhorn CSI 卷在线扩容失败问题分析与解决
问题背景
在 Longhorn 分布式存储系统的测试过程中,发现一个关键测试用例 test_csi_mount_volume_online_expansion
持续失败。该测试用例旨在验证 CSI 驱动对挂载卷在线扩容功能的支持情况。测试失败表现为在第二次扩容操作时无法完成 PVC 容量更新,导致断言失败。
问题现象
测试流程中会执行两次卷扩容操作:
- 第一次从 128MiB 扩容到 256MiB 成功
- 第二次从 256MiB 扩容到 512MiB 失败
失败时 PVC 状态显示:
- spec.resources.requests.storage 更新为 5GiB
- status.capacity.storage 仍保持为 4GiB
- allocatedResourceStatuses 显示为 NodeResizePending
根因分析
通过深入日志分析发现,问题根源在于 CSI 驱动中的文件系统类型检测环节:
-
第一次扩容时,
blkid
命令成功识别出文件系统类型为 ext4:DEVNAME=/dev/longhorn/pvc-xxx TYPE=ext4
-
第二次扩容时,同样的
blkid
命令返回空结果,导致 CSI 驱动无法确定文件系统类型,进而拒绝扩容操作。
进一步调查发现,这与 CSI 外部扩容器 (csi-resizer) 从 v1.12.0 升级到 v1.13.1 版本有关。新版本默认启用了 RecoverVolumeExpansionFailure
特性,该特性会静默重试失败的扩容操作,但缺乏足够的日志输出,使得问题难以诊断。
解决方案
经过团队讨论和验证,确定以下解决方案:
- 回退 csi-resizer 到 v1.12.0 版本
- 或者在新版本中显式禁用
RecoverVolumeExpansionFailure
特性
最终选择采用第一种方案,因为:
- 已验证在 v1.12.0 版本下测试通过
- 避免引入新特性的不确定性
- 提供更稳定的扩容行为
技术细节
在 CSI 驱动的 NodeExpandVolume 实现中,关键步骤如下:
- 接收来自 kubelet 的扩容请求
- 通过
blkid
检测设备文件系统类型 - 根据检测结果执行相应文件系统扩容命令
- 返回操作结果
问题出现在第二步,当 blkid
无法识别已挂载设备的文件系统时,整个扩容流程就会失败。这种情况在连续扩容操作中尤为明显。
影响范围
该问题影响以下 Longhorn 版本:
- master-head
- v1.8.x-head
- v1.7.x-head
主要影响使用 CSI 驱动进行在线卷扩容的场景,特别是需要多次扩容的工作负载。
验证结果
解决方案验证通过:
- 测试用例
test_csi_mount_volume_online_expansion
成功执行 - 两次扩容操作均按预期完成
- PVC 状态正确反映实际容量变化
总结
Longhorn 团队通过深入分析 CSI 驱动与 kubelet 的交互过程,准确定位了在线扩容失败的根本原因。通过版本回退策略快速解决了问题,确保了卷扩容功能的可靠性。这一案例也凸显了在升级关键组件时进行全面测试的重要性,特别是对默认启用的新特性需要格外关注。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









