Longhorn CSI 卷在线扩容失败问题分析与解决
问题背景
在 Longhorn 分布式存储系统的测试过程中,发现一个关键测试用例 test_csi_mount_volume_online_expansion
持续失败。该测试用例旨在验证 CSI 驱动对挂载卷在线扩容功能的支持情况。测试失败表现为在第二次扩容操作时无法完成 PVC 容量更新,导致断言失败。
问题现象
测试流程中会执行两次卷扩容操作:
- 第一次从 128MiB 扩容到 256MiB 成功
- 第二次从 256MiB 扩容到 512MiB 失败
失败时 PVC 状态显示:
- spec.resources.requests.storage 更新为 5GiB
- status.capacity.storage 仍保持为 4GiB
- allocatedResourceStatuses 显示为 NodeResizePending
根因分析
通过深入日志分析发现,问题根源在于 CSI 驱动中的文件系统类型检测环节:
-
第一次扩容时,
blkid
命令成功识别出文件系统类型为 ext4:DEVNAME=/dev/longhorn/pvc-xxx TYPE=ext4
-
第二次扩容时,同样的
blkid
命令返回空结果,导致 CSI 驱动无法确定文件系统类型,进而拒绝扩容操作。
进一步调查发现,这与 CSI 外部扩容器 (csi-resizer) 从 v1.12.0 升级到 v1.13.1 版本有关。新版本默认启用了 RecoverVolumeExpansionFailure
特性,该特性会静默重试失败的扩容操作,但缺乏足够的日志输出,使得问题难以诊断。
解决方案
经过团队讨论和验证,确定以下解决方案:
- 回退 csi-resizer 到 v1.12.0 版本
- 或者在新版本中显式禁用
RecoverVolumeExpansionFailure
特性
最终选择采用第一种方案,因为:
- 已验证在 v1.12.0 版本下测试通过
- 避免引入新特性的不确定性
- 提供更稳定的扩容行为
技术细节
在 CSI 驱动的 NodeExpandVolume 实现中,关键步骤如下:
- 接收来自 kubelet 的扩容请求
- 通过
blkid
检测设备文件系统类型 - 根据检测结果执行相应文件系统扩容命令
- 返回操作结果
问题出现在第二步,当 blkid
无法识别已挂载设备的文件系统时,整个扩容流程就会失败。这种情况在连续扩容操作中尤为明显。
影响范围
该问题影响以下 Longhorn 版本:
- master-head
- v1.8.x-head
- v1.7.x-head
主要影响使用 CSI 驱动进行在线卷扩容的场景,特别是需要多次扩容的工作负载。
验证结果
解决方案验证通过:
- 测试用例
test_csi_mount_volume_online_expansion
成功执行 - 两次扩容操作均按预期完成
- PVC 状态正确反映实际容量变化
总结
Longhorn 团队通过深入分析 CSI 驱动与 kubelet 的交互过程,准确定位了在线扩容失败的根本原因。通过版本回退策略快速解决了问题,确保了卷扩容功能的可靠性。这一案例也凸显了在升级关键组件时进行全面测试的重要性,特别是对默认启用的新特性需要格外关注。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









