Longhorn CSI 卷在线扩容失败问题分析与解决
问题背景
在 Longhorn 分布式存储系统的测试过程中,发现一个关键测试用例 test_csi_mount_volume_online_expansion 持续失败。该测试用例旨在验证 CSI 驱动对挂载卷在线扩容功能的支持情况。测试失败表现为在第二次扩容操作时无法完成 PVC 容量更新,导致断言失败。
问题现象
测试流程中会执行两次卷扩容操作:
- 第一次从 128MiB 扩容到 256MiB 成功
- 第二次从 256MiB 扩容到 512MiB 失败
失败时 PVC 状态显示:
- spec.resources.requests.storage 更新为 5GiB
- status.capacity.storage 仍保持为 4GiB
- allocatedResourceStatuses 显示为 NodeResizePending
根因分析
通过深入日志分析发现,问题根源在于 CSI 驱动中的文件系统类型检测环节:
-
第一次扩容时,
blkid命令成功识别出文件系统类型为 ext4:DEVNAME=/dev/longhorn/pvc-xxx TYPE=ext4 -
第二次扩容时,同样的
blkid命令返回空结果,导致 CSI 驱动无法确定文件系统类型,进而拒绝扩容操作。
进一步调查发现,这与 CSI 外部扩容器 (csi-resizer) 从 v1.12.0 升级到 v1.13.1 版本有关。新版本默认启用了 RecoverVolumeExpansionFailure 特性,该特性会静默重试失败的扩容操作,但缺乏足够的日志输出,使得问题难以诊断。
解决方案
经过团队讨论和验证,确定以下解决方案:
- 回退 csi-resizer 到 v1.12.0 版本
- 或者在新版本中显式禁用
RecoverVolumeExpansionFailure特性
最终选择采用第一种方案,因为:
- 已验证在 v1.12.0 版本下测试通过
- 避免引入新特性的不确定性
- 提供更稳定的扩容行为
技术细节
在 CSI 驱动的 NodeExpandVolume 实现中,关键步骤如下:
- 接收来自 kubelet 的扩容请求
- 通过
blkid检测设备文件系统类型 - 根据检测结果执行相应文件系统扩容命令
- 返回操作结果
问题出现在第二步,当 blkid 无法识别已挂载设备的文件系统时,整个扩容流程就会失败。这种情况在连续扩容操作中尤为明显。
影响范围
该问题影响以下 Longhorn 版本:
- master-head
- v1.8.x-head
- v1.7.x-head
主要影响使用 CSI 驱动进行在线卷扩容的场景,特别是需要多次扩容的工作负载。
验证结果
解决方案验证通过:
- 测试用例
test_csi_mount_volume_online_expansion成功执行 - 两次扩容操作均按预期完成
- PVC 状态正确反映实际容量变化
总结
Longhorn 团队通过深入分析 CSI 驱动与 kubelet 的交互过程,准确定位了在线扩容失败的根本原因。通过版本回退策略快速解决了问题,确保了卷扩容功能的可靠性。这一案例也凸显了在升级关键组件时进行全面测试的重要性,特别是对默认启用的新特性需要格外关注。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00