【亲测免费】 img2pose:基于PyTorch实现的面部对齐与检测——六自由度面部姿态估计
2026-01-23 05:14:58作者:余洋婵Anita
项目介绍
img2pose 是一个高效的面部姿态估计工具,它在无需先进行人脸检测或面部标志点定位的情况下,实现了多个面部的六自由度(6DoF)检测。这项技术在2021年的IEEE计算机视觉与模式识别会议(CVPR)上被提出。通过直接回归图像中所有面部的6DoF刚体变换,该方法简化了传统面部对齐过程,同时提供了比人脸边界框标签更多的信息。作者展示了其模型不仅在实时性能下超越当前最先进的面部姿态估计器,还在WIDER FACE人脸检测基准测试中表现出色,尽管并未针对边界框优化。
项目快速启动
要开始使用img2pose,您首先需要安装必要的依赖项和准备数据集。
安装依赖
确保您的环境中已安装Python 3,并运行以下命令来安装项目所需的库:
pip install -r requirements.txt
接着,您需要安装用于可视化预测结果的渲染器:
cd Sim3DR
sh build_sim3dr.sh
准备WIDER FACE数据集
遵循以下步骤下载和转换WIDER FACE数据集以供训练和验证:
- 下载并解压WIDER FACE至
datasets/WIDER_Face。 - 运行脚本创建训练和验证的LMDB文件:
和python3 convert_json_list_to_lmdb.py \ --json_list /annotations/WIDER_train_annotations.txt \ --dataset_path /datasets/WIDER_Face/WIDER_train/images/ \ --dest /datasets/lmdb/ \ --trainpython3 convert_json_list_to_lmdb.py \ --json_list /annotations/WIDER_val_annotations.txt \ --dataset_path /datasets/WIDER_Face/WIDER_val/images/ \ --dest /datasets/lmdb
训练模型
一旦完成上述步骤,您可以开始训练模型:
对于单GPU训练:
CUDA_VISIBLE_DEVICES=0 python3 train.py \
--pose_mean /datasets/lmdb/WIDER_train_annotations_pose_mean.npy \
--pose_stddev /datasets/lmdb/WIDER_train_annotations_pose_stddev.npy \
--workspace /workspace/ \
--train_source /datasets/lmdb/WIDER_train_annotations.lmdb \
--val_source /datasets/lmdb/WIDER_val_annotations.lmdb \
...
对于多GPU训练(例如,使用4个GPU):
python3 -m torch.distributed.launch --nproc_per_node=4 --use_env train.py \
...
应用案例与最佳实践
img2pose可以应用于实时视频处理、增强现实、面部特效等场景,其中准确且高效的面部定位及姿态估计极为重要。最佳实践中,开发者应关注模型的预处理步骤,如随机翻转和裁剪,以增强模型泛化能力,并利用其提供的批处理功能进行高效训练。
典型生态项目
img2pose作为面部识别和处理领域的一个有力工具,可以与其他面部分析工具结合,比如表情识别系统或3D建模应用,共同构建更加复杂的应用程序。社区中的开发者可能会将此项目与人脸识别、情感分析等其他开源组件集成,设计出全链条的人脸处理解决方案。
请注意,实际部署和生产环境中的应用还需考虑模型优化、资源管理以及隐私保护等因素。img2pose提供了一个强大的起点,但具体实施时可能需按实际需求调整和扩展。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135