Seurat v5.2.0版本发布:单细胞分析工具的重大更新
Seurat是当前单细胞转录组分析领域最流行的R语言工具包之一,由Satija实验室开发维护。作为单细胞数据分析的标准工具,Seurat提供了从原始数据处理到高级分析的全套解决方案。最新发布的5.2.0版本带来了多项功能增强和性能优化,特别是在空间转录组数据处理、算法效率提升和可视化改进方面有显著进步。
核心功能增强
差异表达分析与聚类算法优化
新版本在FindAllMarkers函数中新增了group.by参数,允许用户使用非默认的identity类重新分组数据后再进行差异表达分析。这一改进为复杂实验设计提供了更大的灵活性,用户可以根据不同的细胞注释方案快速切换分析视角。
聚类算法方面,RunLeiden函数现在使用leidenbase包替代了原来的leiden包,同时移除了method参数。值得注意的是,当随机种子(random.seed)设置为0或负数时,函数会自动重置为1,这一调整确保了分析结果的可重复性。
计算性能提升
针对大规模数据集,5.2.0版本显著优化了内存使用效率。RunPCA函数现在能够直接在BPCells矩阵上运行,避免了转换为密集矩阵的过程,大幅降低了内存消耗。同时,JackStraw和RunSLSI函数也新增了对BPCells矩阵的支持,使得这些分析流程能够更高效地处理海量单细胞数据。
空间转录组分析改进
空间转录组技术支持是Seurat的重要特色之一。5.2.0版本对空间数据分析进行了多项增强:
-
Read10X_Image函数新增了image.type参数,允许用户直接创建VisiumV1实例而非常用的VisiumV2,为处理不同版本的Visium数据提供了便利。 -
Xenium数据处理能力得到全面提升。
LoadXenium和ReadXenium函数现在能够兼容XOA v3.0的输出格式,支持更精细地控制加载的数据类型,包括细胞核分割掩膜、分割方法和其他实验元数据。此外,函数现在优先读取cell_feature_matrix.h5文件而非MEX格式文件,并使用arrow包加载.parquet文件,这些改进显著提升了Xenium 3.0数据的处理效率。 -
针对特殊数据集情况,修复了处理不含"Blank Codeword"或"Unassigned Codeword"矩阵时的兼容性问题,并改进了多分子输出同时解析的功能。
可视化与实用工具更新
可视化方面,DimPlot函数新增了stroke.size参数,允许用户调整点元素的描边大小,使图形展示更加美观和专业。
在数据预处理工具方面,DietSeurat函数修复了layers参数的处理问题,确保该参数能够被正确识别和应用。IntegrateLayers函数现在能够正确遵循dims.to.integrate参数,提高了数据整合的精确度。
RunUMAP函数增加了对umap-learn 0.5.0及以上版本的支持,确保用户能够使用最新的UMAP实现。LeverageScore和SketchData函数新增了features参数,同时SketchData的ncells参数现在支持整数向量输入,为数据抽样提供了更多灵活性。
总结
Seurat 5.2.0版本通过算法优化、功能增强和性能提升,进一步巩固了其在单细胞分析领域的领先地位。特别是对空间转录组数据和海量单细胞数据集的处理能力提升,将帮助研究人员更高效地挖掘单细胞数据中的生物学洞见。这些改进既考虑了高级用户对灵活性和性能的需求,也兼顾了初学者对易用性的要求,体现了Seurat团队对单细胞分析生态系统的深刻理解和持续贡献。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00