CUTLASS项目中make_fragment_like与make_tensor_like的差异解析
2025-05-30 17:25:14作者:温玫谨Lighthearted
在NVIDIA的CUTLASS项目中,make_fragment_like和make_tensor_like都是用于创建驻留在寄存器中的张量的重要函数,但它们在底层实现和使用场景上存在关键差异。本文将深入分析这两个函数的区别及其应用场景。
核心差异:布局(Layout)的不同
这两个函数最本质的区别在于它们生成的张量布局方式:
-
make_fragment_like
该函数创建的张量采用"片段式"(fragment)布局,这种布局专门为高效的内存访问模式优化,特别适合处理矩阵乘法等计算密集型操作中的小块数据。片段式布局通常会将数据重新排列,以最大化寄存器利用率和内存访问效率。 -
make_tensor_like
生成的张量则保持更传统的"张量式"(tensor)布局,这种布局更接近常规的多维数组存储方式,保留了原始数据的维度信息。它更适合需要保持数据原始结构的场景。
底层实现分析
从实现层面来看:
make_fragment_like通过重组数据布局来优化计算效率,可能会改变原始数据的物理存储顺序make_tensor_like则保持数据的逻辑布局不变,仅改变存储位置(从内存到寄存器)
应用场景选择
在实际应用中,选择哪个函数取决于具体需求:
- 当需要执行高性能计算核心(如GEMM)时,应优先使用
make_fragment_like,因为它能为计算单元提供最优的数据布局 - 当需要保持数据结构的完整性或进行非计算密集型操作时,
make_tensor_like更为合适
性能考量
在CUDA核心编程中,寄存器访问模式对性能有重大影响。make_fragment_like的设计目标就是最小化寄存器bank冲突,提高指令级并行度。而make_tensor_like则更注重保持数据的逻辑结构,可能在计算效率上有所妥协。
理解这两个函数的区别对于编写高性能CUDA内核至关重要,特别是在使用CUTLASS进行矩阵运算优化时。开发者应根据具体计算模式选择适当的函数,以充分发挥硬件性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248