CUTLASS项目中make_fragment_like与make_tensor_like的差异解析
2025-05-30 09:52:05作者:温玫谨Lighthearted
在NVIDIA的CUTLASS项目中,make_fragment_like和make_tensor_like都是用于创建驻留在寄存器中的张量的重要函数,但它们在底层实现和使用场景上存在关键差异。本文将深入分析这两个函数的区别及其应用场景。
核心差异:布局(Layout)的不同
这两个函数最本质的区别在于它们生成的张量布局方式:
-
make_fragment_like
该函数创建的张量采用"片段式"(fragment)布局,这种布局专门为高效的内存访问模式优化,特别适合处理矩阵乘法等计算密集型操作中的小块数据。片段式布局通常会将数据重新排列,以最大化寄存器利用率和内存访问效率。 -
make_tensor_like
生成的张量则保持更传统的"张量式"(tensor)布局,这种布局更接近常规的多维数组存储方式,保留了原始数据的维度信息。它更适合需要保持数据原始结构的场景。
底层实现分析
从实现层面来看:
make_fragment_like通过重组数据布局来优化计算效率,可能会改变原始数据的物理存储顺序make_tensor_like则保持数据的逻辑布局不变,仅改变存储位置(从内存到寄存器)
应用场景选择
在实际应用中,选择哪个函数取决于具体需求:
- 当需要执行高性能计算核心(如GEMM)时,应优先使用
make_fragment_like,因为它能为计算单元提供最优的数据布局 - 当需要保持数据结构的完整性或进行非计算密集型操作时,
make_tensor_like更为合适
性能考量
在CUDA核心编程中,寄存器访问模式对性能有重大影响。make_fragment_like的设计目标就是最小化寄存器bank冲突,提高指令级并行度。而make_tensor_like则更注重保持数据的逻辑结构,可能在计算效率上有所妥协。
理解这两个函数的区别对于编写高性能CUDA内核至关重要,特别是在使用CUTLASS进行矩阵运算优化时。开发者应根据具体计算模式选择适当的函数,以充分发挥硬件性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328