开源项目教程:awesome-chemistry-datasets
2024-08-31 21:09:33作者:范靓好Udolf
项目介绍
awesome-chemistry-datasets 是一个汇集了多个化学领域机器学习数据集的项目。这些数据集广泛应用于化学信息学、药物发现、材料科学等领域的研究。项目旨在为研究人员和开发者提供一个方便的资源,以便他们能够快速访问和利用这些数据集进行实验和模型训练。
项目快速启动
要开始使用 awesome-chemistry-datasets,首先需要克隆项目仓库到本地:
git clone https://github.com/kjappelbaum/awesome-chemistry-datasets.git
cd awesome-chemistry-datasets
接下来,你可以浏览 README.md 文件,了解各个数据集的详细信息和使用方法。以下是一个简单的示例,展示如何下载和使用其中一个数据集:
import requests
# 示例:下载BC5CDR数据集
url = "https://example.com/datasets/BC5CDR.zip"
response = requests.get(url)
with open("BC5CDR.zip", "wb") as file:
file.write(response.content)
# 解压数据集
import zipfile
with zipfile.ZipFile("BC5CDR.zip", "r") as zip_ref:
zip_ref.extractall("BC5CDR")
# 加载数据集
import pandas as pd
data = pd.read_csv("BC5CDR/data.csv")
print(data.head())
应用案例和最佳实践
应用案例
- 药物发现:使用
ChEMBL数据集进行药物活性预测模型的训练,帮助筛选潜在的药物候选分子。 - 材料科学:利用
QM Datasets进行量子化学计算,预测材料的电子结构和性质。 - 环境科学:通过
SOMAS数据集研究化合物的溶解度,评估其在环境中的迁移和转化行为。
最佳实践
- 数据预处理:在使用数据集之前,进行必要的数据清洗和预处理,确保数据质量。
- 模型选择:根据具体任务选择合适的机器学习模型,如分类、回归或序列标注模型。
- 性能评估:使用交叉验证等方法评估模型性能,确保模型的泛化能力。
典型生态项目
- MoleculeNet:一个包含多个化学数据集的基准套件,用于评估和比较不同机器学习模型的性能。
- Papyrus:一个大规模的生物活性预测数据集,整合了多个公开数据集,如
ChEMBL和ExCAPE-DB。 - Open Reaction Database:一个开放的化学反应数据库,提供丰富的反应数据和相关信息,支持化学合成和反应预测的研究。
通过这些生态项目,研究人员可以更全面地探索和应用化学数据集,推动化学领域的机器学习研究和应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100