开源项目教程:awesome-chemistry-datasets
2024-08-31 18:28:03作者:范靓好Udolf
项目介绍
awesome-chemistry-datasets 是一个汇集了多个化学领域机器学习数据集的项目。这些数据集广泛应用于化学信息学、药物发现、材料科学等领域的研究。项目旨在为研究人员和开发者提供一个方便的资源,以便他们能够快速访问和利用这些数据集进行实验和模型训练。
项目快速启动
要开始使用 awesome-chemistry-datasets,首先需要克隆项目仓库到本地:
git clone https://github.com/kjappelbaum/awesome-chemistry-datasets.git
cd awesome-chemistry-datasets
接下来,你可以浏览 README.md 文件,了解各个数据集的详细信息和使用方法。以下是一个简单的示例,展示如何下载和使用其中一个数据集:
import requests
# 示例:下载BC5CDR数据集
url = "https://example.com/datasets/BC5CDR.zip"
response = requests.get(url)
with open("BC5CDR.zip", "wb") as file:
file.write(response.content)
# 解压数据集
import zipfile
with zipfile.ZipFile("BC5CDR.zip", "r") as zip_ref:
zip_ref.extractall("BC5CDR")
# 加载数据集
import pandas as pd
data = pd.read_csv("BC5CDR/data.csv")
print(data.head())
应用案例和最佳实践
应用案例
- 药物发现:使用
ChEMBL数据集进行药物活性预测模型的训练,帮助筛选潜在的药物候选分子。 - 材料科学:利用
QM Datasets进行量子化学计算,预测材料的电子结构和性质。 - 环境科学:通过
SOMAS数据集研究化合物的溶解度,评估其在环境中的迁移和转化行为。
最佳实践
- 数据预处理:在使用数据集之前,进行必要的数据清洗和预处理,确保数据质量。
- 模型选择:根据具体任务选择合适的机器学习模型,如分类、回归或序列标注模型。
- 性能评估:使用交叉验证等方法评估模型性能,确保模型的泛化能力。
典型生态项目
- MoleculeNet:一个包含多个化学数据集的基准套件,用于评估和比较不同机器学习模型的性能。
- Papyrus:一个大规模的生物活性预测数据集,整合了多个公开数据集,如
ChEMBL和ExCAPE-DB。 - Open Reaction Database:一个开放的化学反应数据库,提供丰富的反应数据和相关信息,支持化学合成和反应预测的研究。
通过这些生态项目,研究人员可以更全面地探索和应用化学数据集,推动化学领域的机器学习研究和应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
515
3.7 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
553
Ascend Extension for PyTorch
Python
318
363
暂无简介
Dart
759
182
React Native鸿蒙化仓库
JavaScript
300
347
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
156
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.31 K
734
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
110
129