Kotlin-AI-Examples项目教程:使用Spring AI实现结构化输出
2025-06-09 20:23:15作者:范垣楠Rhoda
什么是结构化输出?
结构化输出是大型语言模型(LLM)的一项重要能力,它允许模型按照预定义的格式(如JSON、XML等)生成响应,而不仅仅是自由格式的文本。这种能力使得AI生成的响应更易于在应用程序中解析和使用。
在Kotlin-AI-Examples项目中,我们通过Spring AI框架展示了如何利用这一功能,特别是在Kotlin环境下如何优雅地实现结构化输出。
结构化输出的优势
- 一致性:确保每次响应都遵循相同的格式
- 可预测性:明确知道返回数据的结构和类型
- 易用性:可以直接映射到Kotlin数据类,减少解析工作
- 可靠性:比单纯依赖提示词更稳定
两种实现方式对比
1. 通过提示词描述格式
val response = chatClient
.prompt()
.system("The response must be a valid JSON object.")
.user("""
What is the firstName and lastName of the person in this sentence?
"Aurora Skyfield announced her candidacy for the local city council yesterday."
""")
.call()
.content()
这种方法虽然简单,但存在明显缺点:
- 无法保证模型一定会返回完美格式化的JSON
- 需要额外的解析步骤
- 缺乏类型安全
2. 使用结构化输出能力
Spring AI提供了更强大的结构化输出支持,可以直接将响应映射到Kotlin数据类:
data class MobileDevice(
val name: String,
val price: Double,
val category: String,
val features: List<String> = emptyList()
)
val device = chatClient
.prompt("Tell me about the latest smartphone")
.call()
.entity<MobileDevice>()
这种方式优势明显:
- 类型安全
- 自动映射到Kotlin类
- 更可靠的格式保证
- 减少样板代码
实际应用示例
让我们看一个完整的示例,展示如何在Kotlin项目中实现结构化输出:
- 首先定义数据模型:
@Serializable
data class Person(val firstName: String, val lastName: String)
data class MobileDevice(
val name: String,
val price: Double,
val category: String,
val features: List<String> = emptyList()
)
- 配置AI客户端:
val openAiApi = OpenAiApi.builder().apiKey(apiKey).build()
val openAiOptions = OpenAiChatOptions.builder()
.model(OpenAiApi.ChatModel.GPT_4_O_MINI)
.temperature(0.7)
.build()
val chatClient = ChatClient.create(
OpenAiChatModel.builder()
.openAiApi(openAiApi)
.defaultOptions(openAiOptions)
.build()
)
- 使用结构化输出:
// 简单JSON输出
val jsonResponse = chatClient.prompt()
.system("The response must be a valid JSON object.")
.user("Extract person details from: \"Aurora Skyfield announced...\"")
.call()
.content()
// 直接映射到Kotlin类
val device = chatClient
.prompt("Tell me about the latest smartphone")
.call()
.entity<MobileDevice>()
最佳实践
- 明确的数据模型:始终先定义好期望的数据结构
- 适当的错误处理:处理可能的结构化输出失败情况
- 验证数据:即使使用结构化输出,也应验证关键字段
- 合理使用默认值:为可选字段提供合理的默认值
- 文档化:为数据类添加清晰的文档说明
常见问题解答
Q: 结构化输出会影响模型创造力吗? A: 不会,结构化输出只约束响应格式,不影响内容质量。
Q: 所有AI模型都支持结构化输出吗? A: 不是所有模型都原生支持,但通过Spring AI这样的框架可以统一接口。
Q: 如何处理复杂的嵌套结构? A: Kotlin数据类支持嵌套定义,可以很好地表示复杂结构。
Q: 性能影响如何? A: 结构化输出会增加少量处理开销,但通常可以忽略不计。
总结
Kotlin-AI-Examples项目展示了如何在Kotlin生态中高效利用Spring AI的结构化输出能力。通过直接映射到Kotlin数据类,开发者可以获得类型安全、易于维护的AI集成方案。这种方法特别适合需要将AI响应集成到现有系统或需要严格数据格式的场景。
结构化输出不仅提高了开发效率,还增强了系统的可靠性和可维护性,是现代AI应用开发中值得掌握的重要技术。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133