DeepKE-cnSchema关系抽取模型预测结果优化实践
问题背景
在使用DeepKE-cnSchema开箱即用特别版进行关系抽取(RE)任务时,用户反馈模型预测结果存在明显错误。例如输入"男人的爱"和"人生长路"时,模型错误地预测它们之间存在"毕业院校"关系,且置信度高达0.99。这种异常情况表明模型在特定场景下的表现不够理想。
原因分析
经过技术排查,发现该问题主要源于以下两个因素:
-
训练数据时效性:原预训练模型使用的训练数据集可能版本较旧,覆盖的语义关系和语言模式有限,导致对非常规文本关系的识别能力不足。
-
领域适配问题:当输入文本与训练数据的领域分布差异较大时,模型容易产生不符合预期的预测结果。
解决方案
通过更新训练数据集可以有效解决该问题。具体实施步骤如下:
-
获取最新数据集:使用项目提供的最新版训练数据,该数据集经过扩展和优化,包含了更丰富的语义关系和更全面的语言模式。
-
模型重新训练:基于新数据集对模型进行微调或重新训练,确保模型学习到最新的语义知识。
-
预测验证:使用相同的测试用例验证模型效果,确认预测结果符合预期。
技术建议
对于关系抽取任务的实际应用,建议开发者注意以下几点:
-
数据版本管理:定期检查并更新训练数据集,确保使用最新版本。
-
领域适配:如果应用场景特殊,应考虑使用领域数据进行额外的模型微调。
-
结果验证:部署前应建立完善的测试用例集,全面验证模型在各种场景下的表现。
-
置信度阈值:对于关键应用,可设置适当的置信度阈值,过滤低置信度的预测结果。
总结
DeepKE-cnSchema作为一个强大的关系抽取工具,在实际应用中可能会遇到数据时效性带来的性能问题。通过及时更新训练数据,可以有效提升模型的预测准确性和鲁棒性。开发者应当建立规范的数据更新和模型验证流程,确保系统在实际应用中的可靠性。
对于关系抽取任务,持续的数据迭代和模型优化是保证系统性能的关键。建议开发者关注项目更新,及时获取最新的模型和数据资源。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00