AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,可以直接在AWS云平台上运行。DLC包含了主流深度学习框架如PyTorch、TensorFlow等的最新版本,以及必要的依赖库和工具,极大简化了深度学习环境的部署过程。
近日,AWS DLC项目发布了针对PyTorch 2.5.1版本的推理专用容器镜像。这些镜像基于Ubuntu 22.04操作系统,支持Python 3.11环境,为开发者提供了开箱即用的PyTorch推理环境。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:适用于不需要GPU加速的推理场景,镜像标识为
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.7。该版本包含了PyTorch 2.5.1的CPU版本,以及torchvision、torchaudio等配套库。 -
GPU版本:针对需要CUDA加速的推理任务,镜像标识为
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.7。此版本基于CUDA 12.4构建,包含了完整的GPU支持。
关键特性与组件
这两个镜像都预装了丰富的工具和库,确保开发者可以立即开始模型推理工作:
- 核心框架:PyTorch 2.5.1作为核心深度学习框架,提供了最新的模型推理能力。
- 配套库:torchvision 0.20.1和torchaudio 2.5.1,用于计算机视觉和音频处理任务。
- 模型服务工具:包含torchserve 0.12.0和torch-model-archiver 0.12.0,方便模型部署和管理。
- 数据处理库:numpy 2.1.3、pandas 2.2.3、scikit-learn 1.5.2等常用数据处理库。
- 图像处理:opencv-python 4.10.0.84和Pillow 11.0.0提供图像处理能力。
- AWS工具:预装awscli、boto3等AWS命令行工具和SDK,便于与AWS服务集成。
技术细节
对于GPU版本,镜像特别包含了CUDA 12.4相关的库文件,如cuBLAS和cuDNN,确保能够充分利用NVIDIA GPU的加速能力。同时,两个版本都基于Ubuntu 22.04 LTS,提供了稳定的操作系统基础。
值得注意的是,这些镜像还包含了开发工具如emacs编辑器,以及必要的系统库如libgcc和libstdc++,为开发调试提供了便利。
使用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 快速部署:当需要快速部署PyTorch模型进行推理时,可以直接使用这些镜像,省去环境配置的时间。
- 一致性保证:在团队协作或生产环境中,使用统一的镜像可以避免"在我机器上能运行"的问题。
- AWS服务集成:这些镜像针对AWS SageMaker等服务进行了优化,可以无缝集成到AWS的机器学习工作流中。
- 性能优化:AWS对这些镜像进行了性能调优,特别是GPU版本能够充分发挥硬件加速能力。
总结
AWS Deep Learning Containers发布的PyTorch 2.5.1推理镜像为开发者提供了即用型的深度学习环境,特别是针对推理场景进行了优化。无论是CPU还是GPU环境,这些镜像都包含了必要的工具和库,大大简化了模型部署的复杂度。对于使用AWS云平台进行PyTorch模型推理的团队来说,这些官方维护的镜像无疑是高效可靠的选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00