Fillerbuster: 多视角场景补全的最佳实践
2025-05-23 20:29:50作者:廉彬冶Miranda
1. 项目介绍
Fillerbuster 是一个用于解决多种场景补全任务的多视角扩散模型。该项目从零开始训练,为用户提供了训练和推理的代码。Fillerbuster 可以处理各种场景,包括 casual captures 的场景补全,适用于多种应用场景。
2. 项目快速启动
在开始使用 Fillerbuster 之前,您需要准备相应的环境并安装必要的依赖项。
环境准备
首先,创建并激活 fillerbuster
环境:
conda create -n fillerbuster python=3.10 -y
conda activate fillerbuster
安装依赖
接下来,安装 PyTorch 和其他必需的依赖项:
pip install torch torchvision --index-url https://download.pytorch.org/whl/124
pip install -e .
下载权重和推理数据
- 下载 Fillerbuster 权重,并将其放置在
checkpoints
文件夹中。 - 下载 CLIP 权重到
checkpoints
文件夹。 - 下载其他工作的数据集,如 LERF、Nerfbusters、NeRFiller 和 Nerfstudio,并将
data.zip
文件解压到指定的data
文件夹。 - 下载项目的视频文件,并将其放置在
data/videos
文件夹中。
运行推理
Fillerbuster 提供了一个 demo.ipynb
文件,作为运行推理的示例。您可以根据自己的需求修改和运行该文件。
3. 应用案例和最佳实践
以下是几个应用案例和最佳实践:
完成随意捕获的场景
使用以下命令来补全随意捕获的场景:
ns-train fillerbuster --data data/nerfbusters-dataset/picnic --output-dir outputs/nerfstudio-outputs nerfstudio-data --eval-mode filename
未校准的场景补全
运行以下命令来处理视频数据:
python fillerbuster/scripts/run_uncalibrated_scene_completion.py --data data/videos/couch.mov --output-dir outputs/uncalibrated-outputs
补全被遮挡的3D区域
使用以下命令来补全 NeRFiller 数据集中的被遮挡3D区域:
ns-train fillerbuster --data data/nerfiller-dataset/billiards --output-dir outputs/nerfstudio-outputs --pipeline.inpainter nerfiller --pipeline.dilate-iters 5 --pipeline.context-size 32 --pipeline.densify-num 0 --pipeline.anchor-rotation-num 0 --pipeline.anchor-vertical-num 0
4. 典型生态项目
Fillerbuster 项目是一个开源项目,它依赖于其他开源项目,如 diffusers、nerfstudio、torchmetrics 和 transformers。这些项目构成了 Fillerbuster 的生态系统,为它的开发和改进提供了支持。
在采用 Fillerbuster 时,您可以探索这些相关项目,了解它们如何协同工作,以及如何为您的具体需求做出贡献。通过贡献社区和遵循最佳实践,您可以进一步推动开源生态的发展。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105