首页
/ Smol Vision 开源项目教程

Smol Vision 开源项目教程

2024-09-25 02:12:51作者:庞队千Virginia

1. 项目介绍

Smol Vision 是一个专注于缩减、优化和定制前沿视觉模型的开源项目。该项目提供了多种方法和工具,帮助开发者将复杂的视觉模型优化为更小、更高效的版本,适用于资源受限的环境。Smol Vision 的核心目标是让开发者能够轻松地应用最新的视觉技术,同时保持模型的性能和准确性。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的开发环境已经安装了以下依赖:

  • Python 3.7 或更高版本
  • Git
  • PyTorch
  • Hugging Face Transformers
  • Optimum

2.2 克隆项目

首先,克隆 Smol Vision 项目到本地:

git clone https://github.com/merveenoyan/smol-vision.git
cd smol-vision

2.3 安装依赖

进入项目目录后,安装所需的 Python 依赖包:

pip install -r requirements.txt

2.4 运行示例

Smol Vision 提供了多个示例脚本,您可以通过以下命令运行其中一个示例:

python examples/faster_foundation_models_with_torch_compile.py

3. 应用案例和最佳实践

3.1 零样本目标检测

Smol Vision 提供了一个使用 Optimum 进行零样本目标检测的示例。通过量化和优化,您可以将 OWLv2 模型缩减为更小的版本,同时保持其检测性能。

from optimum.onnxruntime import ORTQuantizer
from transformers import AutoModelForObjectDetection

model = AutoModelForObjectDetection.from_pretrained("OWLv2")
quantizer = ORTQuantizer.from_pretrained(model)
quantized_model = quantizer.quantize()

3.2 视觉语言模型微调

Smol Vision 还提供了对 PaliGemma 等视觉语言模型进行微调的示例。通过 QLoRA 技术,您可以在保持模型性能的同时,显著减少模型的体积。

from transformers import Trainer, TrainingArguments
from smol_vision.models import PaliGemma

model = PaliGemma.from_pretrained("PaliGemma")
training_args = TrainingArguments(output_dir="./results", num_train_epochs=3)
trainer = Trainer(model=model, args=training_args)
trainer.train()

4. 典型生态项目

4.1 Hugging Face Transformers

Smol Vision 与 Hugging Face 的 Transformers 库紧密集成,提供了对多种前沿视觉模型的支持。通过 Transformers 库,您可以轻松加载和使用这些模型。

4.2 Optimum

Optimum 是 Hugging Face 推出的一个优化工具包,专注于模型的量化、剪枝和加速。Smol Vision 利用 Optimum 提供的工具,帮助开发者进一步优化视觉模型。

4.3 PyTorch

作为深度学习领域的主流框架,PyTorch 在 Smol Vision 中扮演了重要角色。通过 PyTorch 的编译和优化功能,Smol Vision 能够显著提升模型的运行效率。


通过本教程,您应该能够快速上手 Smol Vision 项目,并了解如何应用其提供的工具和方法来优化和定制前沿视觉模型。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
269
2.54 K
flutter_flutterflutter_flutter
暂无简介
Dart
558
124
fountainfountain
一个用于服务器应用开发的综合工具库。 - 零配置文件 - 环境变量和命令行参数配置 - 约定优于配置 - 深刻利用仓颉语言特性 - 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
cangjie_runtimecangjie_runtime
仓颉编程语言运行时与标准库。
Cangjie
126
104
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
728
70