Smol Vision 开源项目教程
1. 项目介绍
Smol Vision 是一个专注于缩减、优化和定制前沿视觉模型的开源项目。该项目提供了多种方法和工具,帮助开发者将复杂的视觉模型优化为更小、更高效的版本,适用于资源受限的环境。Smol Vision 的核心目标是让开发者能够轻松地应用最新的视觉技术,同时保持模型的性能和准确性。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.7 或更高版本
- Git
- PyTorch
- Hugging Face Transformers
- Optimum
2.2 克隆项目
首先,克隆 Smol Vision 项目到本地:
git clone https://github.com/merveenoyan/smol-vision.git
cd smol-vision
2.3 安装依赖
进入项目目录后,安装所需的 Python 依赖包:
pip install -r requirements.txt
2.4 运行示例
Smol Vision 提供了多个示例脚本,您可以通过以下命令运行其中一个示例:
python examples/faster_foundation_models_with_torch_compile.py
3. 应用案例和最佳实践
3.1 零样本目标检测
Smol Vision 提供了一个使用 Optimum 进行零样本目标检测的示例。通过量化和优化,您可以将 OWLv2 模型缩减为更小的版本,同时保持其检测性能。
from optimum.onnxruntime import ORTQuantizer
from transformers import AutoModelForObjectDetection
model = AutoModelForObjectDetection.from_pretrained("OWLv2")
quantizer = ORTQuantizer.from_pretrained(model)
quantized_model = quantizer.quantize()
3.2 视觉语言模型微调
Smol Vision 还提供了对 PaliGemma 等视觉语言模型进行微调的示例。通过 QLoRA 技术,您可以在保持模型性能的同时,显著减少模型的体积。
from transformers import Trainer, TrainingArguments
from smol_vision.models import PaliGemma
model = PaliGemma.from_pretrained("PaliGemma")
training_args = TrainingArguments(output_dir="./results", num_train_epochs=3)
trainer = Trainer(model=model, args=training_args)
trainer.train()
4. 典型生态项目
4.1 Hugging Face Transformers
Smol Vision 与 Hugging Face 的 Transformers 库紧密集成,提供了对多种前沿视觉模型的支持。通过 Transformers 库,您可以轻松加载和使用这些模型。
4.2 Optimum
Optimum 是 Hugging Face 推出的一个优化工具包,专注于模型的量化、剪枝和加速。Smol Vision 利用 Optimum 提供的工具,帮助开发者进一步优化视觉模型。
4.3 PyTorch
作为深度学习领域的主流框架,PyTorch 在 Smol Vision 中扮演了重要角色。通过 PyTorch 的编译和优化功能,Smol Vision 能够显著提升模型的运行效率。
通过本教程,您应该能够快速上手 Smol Vision 项目,并了解如何应用其提供的工具和方法来优化和定制前沿视觉模型。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









