Smol Vision 开源项目教程
1. 项目介绍
Smol Vision 是一个专注于缩减、优化和定制前沿视觉模型的开源项目。该项目提供了多种方法和工具,帮助开发者将复杂的视觉模型优化为更小、更高效的版本,适用于资源受限的环境。Smol Vision 的核心目标是让开发者能够轻松地应用最新的视觉技术,同时保持模型的性能和准确性。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.7 或更高版本
- Git
- PyTorch
- Hugging Face Transformers
- Optimum
2.2 克隆项目
首先,克隆 Smol Vision 项目到本地:
git clone https://github.com/merveenoyan/smol-vision.git
cd smol-vision
2.3 安装依赖
进入项目目录后,安装所需的 Python 依赖包:
pip install -r requirements.txt
2.4 运行示例
Smol Vision 提供了多个示例脚本,您可以通过以下命令运行其中一个示例:
python examples/faster_foundation_models_with_torch_compile.py
3. 应用案例和最佳实践
3.1 零样本目标检测
Smol Vision 提供了一个使用 Optimum 进行零样本目标检测的示例。通过量化和优化,您可以将 OWLv2 模型缩减为更小的版本,同时保持其检测性能。
from optimum.onnxruntime import ORTQuantizer
from transformers import AutoModelForObjectDetection
model = AutoModelForObjectDetection.from_pretrained("OWLv2")
quantizer = ORTQuantizer.from_pretrained(model)
quantized_model = quantizer.quantize()
3.2 视觉语言模型微调
Smol Vision 还提供了对 PaliGemma 等视觉语言模型进行微调的示例。通过 QLoRA 技术,您可以在保持模型性能的同时,显著减少模型的体积。
from transformers import Trainer, TrainingArguments
from smol_vision.models import PaliGemma
model = PaliGemma.from_pretrained("PaliGemma")
training_args = TrainingArguments(output_dir="./results", num_train_epochs=3)
trainer = Trainer(model=model, args=training_args)
trainer.train()
4. 典型生态项目
4.1 Hugging Face Transformers
Smol Vision 与 Hugging Face 的 Transformers 库紧密集成,提供了对多种前沿视觉模型的支持。通过 Transformers 库,您可以轻松加载和使用这些模型。
4.2 Optimum
Optimum 是 Hugging Face 推出的一个优化工具包,专注于模型的量化、剪枝和加速。Smol Vision 利用 Optimum 提供的工具,帮助开发者进一步优化视觉模型。
4.3 PyTorch
作为深度学习领域的主流框架,PyTorch 在 Smol Vision 中扮演了重要角色。通过 PyTorch 的编译和优化功能,Smol Vision 能够显著提升模型的运行效率。
通过本教程,您应该能够快速上手 Smol Vision 项目,并了解如何应用其提供的工具和方法来优化和定制前沿视觉模型。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00