LobeChat Pro 项目服务器端数据库部署指南
前言
LobeChat Pro 是一款功能强大的聊天应用,默认使用客户端数据库(IndexedDB)存储数据,同时也支持部署服务器端数据库。本文将详细介绍如何为 LobeChat Pro 配置和部署服务器端数据库方案。
服务器端数据库架构概述
LobeChat Pro 的服务器端数据库方案采用 PostgreSQL 作为核心存储引擎,主要包含三个关键模块:
- 数据库服务:PostgreSQL 数据库实例
- 认证服务:用户身份验证系统
- 存储服务:文件存储解决方案
这种架构设计确保了系统的可扩展性、安全性和性能。
PostgreSQL 数据库配置
数据库选择
LobeChat Pro 支持两种 PostgreSQL 实例类型:
- Serverless 实例:如 Vercel/Neon 等无服务器数据库
- 自托管实例:通过 Docker/Railway/Zeabur 等部署的传统 PostgreSQL 实例
核心环境变量配置
1. 服务模式切换
NEXT_PUBLIC_SERVICE_MODE=server
此变量用于切换客户端/服务器端模式,默认值为 client,部署服务器端时需要设置为 server。
2. 数据库连接
DATABASE_URL=postgres://username:password@host:port/database
这是 PostgreSQL 的标准连接字符串格式。如需启用 SSL 连接,请参考相关文档进行配置。
3. 数据库驱动类型
DATABASE_DRIVER=node|neon
node:适用于传统 PostgreSQL 实例neon:适用于 Serverless 实例
4. 数据加密密钥
KEY_VAULTS_SECRET=your_32_char_random_string
使用 OpenSSL 生成随机密钥:
openssl rand -base64 32
pgvector 插件安装
LobeChat Pro 的 RAG(检索增强生成)功能依赖 PostgreSQL 的 pgvector 插件,用于实现向量搜索能力。部署时需确保数据库已安装此插件。
认证服务配置
LobeChat Pro 提供两种认证方案:
1. Clerk 认证服务
Clerk 是一款 SaaS 认证服务,提供开箱即用的认证功能,适合需要快速上线的场景。
配置参数:
NEXT_PUBLIC_CLERK_PUBLISHABLE_KEY=your_publishable_key
CLERK_SECRET_KEY=your_secret_key
CLERK_WEBHOOK_SECRET=your_webhook_secret
2. NextAuth 认证服务
NextAuth 是一个开源认证库,支持多种身份提供商,适合需要完全私有化部署的场景。
特点:
- 支持多种 OAuth 提供商
- 可自定义认证流程
- 完全自主可控
对象存储服务配置
LobeChat Pro 的多模态功能(如图片上传)需要依赖兼容的对象存储服务。
支持的存储方案:
- Amazon S3
- 其他主流对象存储服务
- 阿里云 OSS
- MinIO(自托管)
配置要点:
- 创建存储桶(Bucket)
- 配置访问权限
- 设置环境变量连接信息
部署实践建议
1. Vercel 平台部署
- 推荐使用 Serverless PostgreSQL + Clerk 认证组合
- 配置简单,适合快速上线
2. Docker 部署
- 推荐使用传统 PostgreSQL + NextAuth 认证组合
- 适合私有化部署场景
- 官方提供预配置的
lobe-chat-database镜像
3. 混合部署
- 可根据实际需求混合搭配不同组件
- 例如:使用 Neon 数据库 + NextAuth 认证
常见问题解答
Q:为什么需要单独的数据库版本镜像? A:因为 NEXT_PUBLIC 前缀的环境变量需要在构建时注入,无法在容器运行时修改。
Q:如何确保数据安全? A:通过 KEY_VAULTS_SECRET 加密敏感数据,建议定期轮换密钥。
Q:文件存储是否必须使用对象存储? A:对于生产环境推荐使用兼容的对象存储方案,开发环境可暂时使用本地存储方案。
总结
部署 LobeChat Pro 的服务器端数据库方案需要综合考虑数据库、认证和存储三个核心组件。根据您的具体需求选择合适的配置组合,可以构建出高性能、安全可靠的聊天应用后端。本文提供的配置指南和最佳实践将帮助您顺利完成部署。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00