如何在本地加载SmolLM-Base微调后的模型
2025-07-03 00:29:50作者:龚格成
在使用SmolLM-Base模型进行企业数据微调时,许多开发者会遇到模型加载的问题,特别是当需要将模型保存在本地而非上传至公共平台时。本文将详细介绍正确的加载方法及常见问题的解决方案。
模型保存结构分析
当使用Hugging Face的Trainer进行模型微调后,输出目录通常包含以下关键文件:
- adapter_config.json:适配器配置信息
- adapter_model.safetensors:模型权重文件
- *checkpoint-目录:训练过程中的检查点
- training_args.bin:训练参数配置
值得注意的是,标准的完整模型保存应包含config.json文件,但在使用参数高效微调方法(如LoRA)时,可能只保存适配器相关文件。
正确的模型加载方法
对于使用适配器微调的模型,应当加载检查点目录而非根目录。以下是正确的Python代码示例:
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import torch
# 设备配置
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# 加载处理器和模型
processor = AutoProcessor.from_pretrained("./test/checkpoint-6")
model = Idefics3ForConditionalGeneration.from_pretrained(
"./test/checkpoint-6",
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager"
).to(DEVICE)
常见问题及解决方案
-
缺少config.json文件错误:
- 原因:尝试从只包含适配器文件的目录加载完整模型
- 解决:确保加载检查点目录而非根目录
-
设备兼容性问题:
- 当使用CUDA设备时,建议指定flash_attention_2实现以获得最佳性能
- CPU设备应使用eager实现
-
数据类型选择:
- 推荐使用torch.bfloat16以减少内存占用同时保持模型精度
- 对于不支持bfloat16的设备,可考虑使用float16
最佳实践建议
- 训练完成后,验证检查点目录是否包含所有必要文件
- 在加载模型前,检查目标设备的兼容性
- 对于生产环境,建议将最终模型转换为完整格式而非仅保存适配器
- 考虑使用模型量化技术进一步减小模型大小和内存占用
通过遵循上述指导,开发者可以顺利地在本地环境中加载和使用微调后的SmolLM-Base模型,同时确保企业数据的隐私和安全。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355