如何在本地加载SmolLM-Base微调后的模型
2025-07-03 23:37:59作者:龚格成
在使用SmolLM-Base模型进行企业数据微调时,许多开发者会遇到模型加载的问题,特别是当需要将模型保存在本地而非上传至公共平台时。本文将详细介绍正确的加载方法及常见问题的解决方案。
模型保存结构分析
当使用Hugging Face的Trainer进行模型微调后,输出目录通常包含以下关键文件:
- adapter_config.json:适配器配置信息
- adapter_model.safetensors:模型权重文件
- *checkpoint-目录:训练过程中的检查点
- training_args.bin:训练参数配置
值得注意的是,标准的完整模型保存应包含config.json文件,但在使用参数高效微调方法(如LoRA)时,可能只保存适配器相关文件。
正确的模型加载方法
对于使用适配器微调的模型,应当加载检查点目录而非根目录。以下是正确的Python代码示例:
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import torch
# 设备配置
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# 加载处理器和模型
processor = AutoProcessor.from_pretrained("./test/checkpoint-6")
model = Idefics3ForConditionalGeneration.from_pretrained(
"./test/checkpoint-6",
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager"
).to(DEVICE)
常见问题及解决方案
-
缺少config.json文件错误:
- 原因:尝试从只包含适配器文件的目录加载完整模型
- 解决:确保加载检查点目录而非根目录
-
设备兼容性问题:
- 当使用CUDA设备时,建议指定flash_attention_2实现以获得最佳性能
- CPU设备应使用eager实现
-
数据类型选择:
- 推荐使用torch.bfloat16以减少内存占用同时保持模型精度
- 对于不支持bfloat16的设备,可考虑使用float16
最佳实践建议
- 训练完成后,验证检查点目录是否包含所有必要文件
- 在加载模型前,检查目标设备的兼容性
- 对于生产环境,建议将最终模型转换为完整格式而非仅保存适配器
- 考虑使用模型量化技术进一步减小模型大小和内存占用
通过遵循上述指导,开发者可以顺利地在本地环境中加载和使用微调后的SmolLM-Base模型,同时确保企业数据的隐私和安全。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++046Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0290Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp全栈开发课程中React实验项目的分类修正4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp课程视频测验中的Tab键导航问题解析
最新内容推荐
Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
168
2.05 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
101
610

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0