如何在本地加载SmolLM-Base微调后的模型
2025-07-03 07:46:30作者:龚格成
在使用SmolLM-Base模型进行企业数据微调时,许多开发者会遇到模型加载的问题,特别是当需要将模型保存在本地而非上传至公共平台时。本文将详细介绍正确的加载方法及常见问题的解决方案。
模型保存结构分析
当使用Hugging Face的Trainer进行模型微调后,输出目录通常包含以下关键文件:
- adapter_config.json:适配器配置信息
- adapter_model.safetensors:模型权重文件
- *checkpoint-目录:训练过程中的检查点
- training_args.bin:训练参数配置
值得注意的是,标准的完整模型保存应包含config.json文件,但在使用参数高效微调方法(如LoRA)时,可能只保存适配器相关文件。
正确的模型加载方法
对于使用适配器微调的模型,应当加载检查点目录而非根目录。以下是正确的Python代码示例:
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import torch
# 设备配置
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# 加载处理器和模型
processor = AutoProcessor.from_pretrained("./test/checkpoint-6")
model = Idefics3ForConditionalGeneration.from_pretrained(
"./test/checkpoint-6",
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager"
).to(DEVICE)
常见问题及解决方案
-
缺少config.json文件错误:
- 原因:尝试从只包含适配器文件的目录加载完整模型
- 解决:确保加载检查点目录而非根目录
-
设备兼容性问题:
- 当使用CUDA设备时,建议指定flash_attention_2实现以获得最佳性能
- CPU设备应使用eager实现
-
数据类型选择:
- 推荐使用torch.bfloat16以减少内存占用同时保持模型精度
- 对于不支持bfloat16的设备,可考虑使用float16
最佳实践建议
- 训练完成后,验证检查点目录是否包含所有必要文件
- 在加载模型前,检查目标设备的兼容性
- 对于生产环境,建议将最终模型转换为完整格式而非仅保存适配器
- 考虑使用模型量化技术进一步减小模型大小和内存占用
通过遵循上述指导,开发者可以顺利地在本地环境中加载和使用微调后的SmolLM-Base模型,同时确保企业数据的隐私和安全。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
654
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
857