Redux Toolkit v2.8.0 发布:增强 React Native 兼容性与无限查询功能优化
Redux Toolkit 是 Redux 官方推荐的工具集,它简化了 Redux 的使用方式,提供了诸如 createSlice、createAsyncThunk 等实用工具,让状态管理变得更加高效和便捷。最新发布的 v2.8.0 版本带来了两个重要改进:更好地支持 React Native 环境,以及增强了无限查询功能的灵活性。
React Native 兼容性提升
在 Node.js 生态系统中,package.json 的 exports 字段用于定义包的入口点。随着 Expo 和 Metro 打包工具对 exports 字段支持的不断完善,之前的包定义方式开始出现兼容性问题并产生警告信息。
开发团队重新设计了包的导出定义,解决了这些问题。这意味着现在在 React Native 项目中集成 Redux Toolkit 将更加顺畅,不会出现不必要的警告信息。这对于使用 React Native 进行跨平台应用开发的开发者来说是个好消息,因为他们可以更专注于业务逻辑的实现,而不必担心工具链的兼容性问题。
无限查询功能增强
Redux Toolkit 的 RTK Query 功能提供了强大的数据获取和缓存能力。其中,无限查询(Infinite Query)允许开发者实现分页加载更多数据的功能。在之前的版本中,getNextPageParam 和 getPreviousPageParam 回调函数的签名如下:
(
lastPage: DataType,
allPages: Array<DataType>,
lastPageParam: PageParam,
allPageParams: Array<PageParam>,
) => PageParam | undefined | null
这个设计直接借鉴了 React Query 的实现。然而,与 React Query 不同的是,RTK Query 的这些回调是在端点定义中配置的,而不是在组件内部定义,因此开发者无法直接访问查询参数(queryArg)。
v2.8.0 版本新增了 queryArg 作为第五个参数,现在回调函数的签名变为:
(
lastPage: DataType,
allPages: Array<DataType>,
lastPageParam: PageParam,
allPageParams: Array<PageParam>,
queryArg: QueryArgType
) => PageParam | undefined | null
这个改进使得开发者可以在计算下一页或上一页参数时,基于原始查询参数做出更灵活的判断,大大增强了无限查询功能的实用性。
其他改进
除了上述主要变化外,v2.8.0 还包含了一些文档更新:
- 改进了文档搜索功能,现在使用本地生成的搜索索引,不仅更加可靠,还提供了更好的搜索结果展示界面。
- 修复了一些长期存在的文档问题,提升了整体的文档质量和使用体验。
升级建议
对于正在使用 Redux Toolkit 的开发者,特别是那些在 React Native 项目中使用的开发者,建议尽快升级到 v2.8.0 版本以享受这些改进带来的好处。升级过程应该是平滑的,不会引入破坏性变更。
需要注意的是,虽然这个版本带来了许多改进,但后续的 v2.8.2 版本修复了一些问题(如包体积回归和与 jest-environment-jsdom 的兼容性问题),因此建议开发者直接升级到最新的 v2.8.2 版本。
Redux Toolkit 持续演进,不断优化开发者体验,这个版本再次证明了它作为 Redux 生态系统中首选工具集的地位。无论是新项目还是现有项目,都值得考虑采用或升级到这个强大的状态管理工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00