Flair NLP 0.15.1版本发布:新增深度最近类均值分类器与多项优化
Flair是一个基于PyTorch构建的现代自然语言处理(NLP)框架,以其简单易用的API和强大的序列标注能力而闻名。该框架支持多种NLP任务,包括命名实体识别(NER)、词性标注(POS)、文本分类等。最新发布的0.15.1版本不仅修复了与PyTorch和SciPy最新版本的兼容性问题,还引入了一些令人兴奋的新功能和改进。
核心新功能:深度最近类均值分类器
本次更新最引人注目的新增功能是深度最近类均值(Deep Nearest Class Means, DeepNCM)分类器。这是一种替代传统Softmax分类器的新方法,其核心思想是将数据点分类到具有最接近类数据均值的类别。
DeepNCM分类器特别适合以下场景:
- 类别不平衡的数据集
- 需要更鲁棒分类决策的任务
- 希望减少模型复杂度的应用
在Flair框架中使用DeepNCM非常简单。开发者可以通过创建一个特殊的DeepNCMDecoder并将其传递给TextClassifier来构建模型。训练时还需要添加DeepNCMPlugin插件。这种设计保持了Flair一贯的简洁API风格,同时提供了强大的新功能。
文本处理与标注增强
0.15.1版本对文本处理流程进行了多项改进:
-
SegtokTokenizer定制化:现在可以更灵活地配置这个基于规则的标记器,适应不同语言的特定需求。
-
RegexpTagger增强:新增了定义匹配组的功能,使基于正则表达式的标注更加精确和强大。
-
关系分类器优化:增加了过滤长句子和截断上下文的功能,显著提升了处理长文本关系的效率。
-
文档加载改进:现在可以将完整文档作为Sentence对象加载,简化了文档级NLP任务的预处理流程。
数据集扩展
新版本增加了BarNER数据集,这是一个专门用于生物医学领域命名实体识别的资源,为医疗健康相关的NLP研究提供了更多可能性。
兼容性修复与性能优化
0.15.1版本解决了与PyTorch 2.6和最新SciPy版本的兼容性问题:
- 修复了模型加载机制,确保在PyTorch 2.6环境下正常工作
- 更新了SciPy相关代码,将过时的.A属性替换为toarray()方法
- 修正了文本回归模型的评估指标计算方式
- 修复了张量类型转换的相关问题
这些改进确保了Flair在最新Python科学计算生态中的稳定运行。
总结
Flair 0.15.1版本在保持框架易用性的同时,通过引入DeepNCM分类器等创新功能,进一步扩展了其应用场景。对文本处理流程的细化和性能优化,使得这个本就强大的NLP框架更加完善。无论是学术研究还是工业应用,这个版本都值得NLP从业者关注和升级。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00