Jupyter AI 项目中解决 macOS M1 芯片上的 psutil 兼容性问题
问题背景
在使用 Jupyter AI 和 JupyterLab 组合开发时,部分开发者可能会遇到一个奇怪的错误提示:"The file '.../psutil/_psutil_osx.abi3.so' seems to be overriding built in modules and interfering with the startup of the kernel"。这个错误通常出现在搭载 Apple Silicon (M1/M2) 处理器的 macOS 设备上,当尝试运行 Jupyter notebook 时。
错误本质分析
该错误的根本原因是 Python 的 psutil 模块(一个用于获取系统信息的跨平台库)在 Apple Silicon 架构下的兼容性问题。错误信息中提到的"incompatible architecture (have 'x86_64', need 'arm64e' or 'arm64')"明确指出了问题所在:系统安装的是 x86_64 架构的 psutil 二进制文件,而 M1/M2 芯片需要的是 arm64 架构的版本。
问题复现环境
这个问题通常出现在以下环境中:
- 使用 macOS 的 Apple Silicon 设备(M1/M2 系列芯片)
- 通过 pip 直接安装 Jupyter AI 和 JupyterLab
- Python 虚拟环境中
- 使用系统自带的 Python 或通过 Homebrew 安装的 Python
解决方案
解决此问题的方法是通过源码重新编译安装 psutil 模块,而不是使用预编译的二进制包:
pip uninstall psutil
pip install --no-binary :all: psutil
这个命令会:
- 首先卸载现有的 psutil 包
- 然后从源码重新编译安装,确保生成与当前系统架构兼容的二进制文件
技术原理
在 Apple Silicon 设备上,Python 生态系统的过渡期导致了这类兼容性问题。许多 Python 包默认提供的是 x86_64 架构的预编译二进制文件(wheel),而 M1/M2 芯片需要 arm64 架构的版本。通过 --no-binary 参数强制从源码编译,可以确保生成的二进制文件与当前处理器架构完全兼容。
预防措施
为了避免类似问题,开发者可以:
- 使用专为 Apple Silicon 优化的 Python 发行版(如 Miniforge)
- 创建虚拟环境时明确指定架构
- 定期检查并更新依赖包
- 优先使用 conda 管理环境(conda 能更好地处理不同架构的包)
总结
在 Jupyter AI 项目开发中遇到这类兼容性问题时,理解底层原因比单纯解决表面错误更重要。通过源码重新编译关键依赖项是解决架构不匹配问题的有效方法,这种方法不仅适用于 psutil 模块,也适用于其他可能出现类似兼容性问题的 Python 包。
对于使用 Apple Silicon 设备的开发者来说,保持开发环境的纯净和一致性尤为重要,这能有效减少因架构差异导致的各种奇怪问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00