Stable Baselines3中使用连续动作空间训练Atari游戏的技术解析
背景介绍
Stable Baselines3是一个基于PyTorch的强化学习算法库,广泛应用于各类强化学习任务中。在处理Atari游戏环境时,通常默认使用离散动作空间,但某些情况下开发者可能需要使用连续动作空间来控制游戏角色。
问题现象
当开发者尝试使用make_atari_env函数创建连续动作空间的Atari环境时,会遇到AssertionError错误。具体表现为在环境初始化阶段,系统无法正确处理连续动作输入。
技术分析
根本原因
-
Atari包装器兼容性问题:Stable Baselines3提供的Atari环境包装器(如
FireResetEnv、EpisodicLifeEnv等)主要是为离散动作空间设计的,没有考虑连续动作空间的情况。 -
动作格式不匹配:在连续动作模式下,Atari环境期望接收一个numpy数组作为输入,但包装器中的某些步骤检查会导致动作格式不符合要求。
-
初始化流程冲突:部分Atari包装器在reset过程中会执行预设动作(如no-op操作),这些操作在连续动作空间下无法正确执行。
解决方案对比
方案一:直接创建环境(可行)
env = gym.make("ALE/Pong-v5", continuous=True)
model = PPO("CnnPolicy", env, verbose=1)
这种方法之所以可行,是因为它绕过了Stable Baselines3中为离散动作空间设计的Atari特定包装器,直接使用原始环境。
方案二:修改包装器(高级方案)
对于需要多环境并行训练的场景,可以创建自定义的Atari包装器,主要修改以下部分:
- 移除或修改
NoopResetEnv中的预设动作逻辑 - 调整
FireResetEnv中的动作处理 - 确保所有包装器都能正确处理连续动作输入
技术建议
-
简单场景:对于单环境训练,直接使用
gym.make创建环境是最简单的解决方案。 -
并行训练需求:如果需要多环境并行训练,可以考虑:
- 使用
SubprocVecEnv手动创建多个环境实例 - 继承并修改现有的Atari包装器,使其支持连续动作
- 使用
-
策略选择:连续动作空间的Atari游戏训练通常需要:
- 调整PPO算法的参数,特别是与动作分布相关的设置
- 可能需要更长的训练时间来收敛
- 考虑使用更适合连续控制的算法如SAC
实现示例
import gymnasium as gym
from stable_baselines3 import PPO
# 正确创建连续动作空间Atari环境的方法
env = gym.make("ALE/Pong-v5", continuous=True)
# 使用PPO算法进行训练
model = PPO("CnnPolicy", env, verbose=1)
model.learn(total_timesteps=10_000)
# 测试训练好的模型
vec_env = model.get_env()
obs = vec_env.reset()
for _ in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, _, _, _ = vec_env.step(action)
vec_env.render()
env.close()
总结
在Stable Baselines3中使用连续动作空间训练Atari游戏需要注意环境包装器的兼容性问题。虽然标准Atari包装器不支持连续动作空间,但通过直接创建环境或自定义包装器的方式可以实现这一需求。开发者应根据具体场景选择最适合的解决方案,并注意调整算法参数以获得最佳训练效果。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00