Git Awards:探索GitHub排名的新方式
项目介绍
Git Awards 是一个开源项目,旨在帮助开发者了解自己在GitHub上的排名情况。通过分析GitHub用户的仓库信息,Git Awards能够根据语言和地理位置(城市、国家及全球)计算出用户的排名。这个项目不仅为开发者提供了一个全新的视角来审视自己在GitHub上的影响力,还为社区提供了一个有趣的数据分析工具。
项目技术分析
Git Awards的技术实现分为几个关键步骤:
-
数据抓取:通过GitHub API获取用户和仓库的基本信息。由于GitHub用户和仓库数量庞大,项目采用了分页抓取的方式,每小时最多可以获取50万条数据。
-
数据细化:利用Google Big Query从GitHub Archive数据集中提取用户的详细信息,如位置、语言和星标数量。这一步骤通过SQL查询实现,确保数据的准确性和完整性。
-
地理编码:对用户的位置信息进行地理编码,以便后续按地理位置进行排名。项目结合了Google Geocoding API和Open Street Map API,以提高地理编码的速度和准确性。
-
排名计算:使用PostgreSQL的
ROW_NUMBER()函数计算用户在特定语言和地理位置的排名。排名公式综合考虑了仓库的星标数量和仓库数量,确保排名的公平性。 -
数据存储与查询优化:将所有排名信息存储在一个表中,并通过索引优化查询速度,确保用户能够快速获取自己的排名信息。
项目及技术应用场景
Git Awards的应用场景非常广泛:
-
开发者自我评估:开发者可以通过Git Awards了解自己在特定编程语言或地理位置的排名,从而评估自己的技术影响力。
-
社区分析:开源社区可以通过Git Awards分析特定语言或地区的开发者活跃度,为社区发展提供数据支持。
-
招聘与合作:企业可以通过Git Awards找到特定领域的高排名开发者,进行招聘或合作。
项目特点
-
数据驱动:Git Awards通过大数据分析和地理编码技术,为用户提供准确、实时的排名信息。
-
多维度排名:支持按语言、城市、国家和全球多个维度进行排名,满足不同用户的需求。
-
开源社区友好:项目代码完全开源,欢迎开发者贡献代码和提出改进建议,共同推动项目发展。
-
技术栈丰富:结合了GitHub API、Google Big Query、PostgreSQL等多种技术,展示了现代数据分析技术的应用。
结语
Git Awards不仅是一个有趣的项目,更是一个强大的工具,帮助开发者更好地了解自己在GitHub上的影响力。无论你是想了解自己的技术排名,还是想分析开源社区的活跃度,Git Awards都能为你提供有力的支持。快来体验吧,探索你在GitHub上的新排名!
项目地址:Git Awards
贡献指南:欢迎通过Fork和Pull Request的方式参与项目开发。
许可证:MIT License
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00