**高效管理Chrome加密Cookies的神器:chrome-cookies-secure**
在Web开发与自动化测试领域中,处理浏览器Cookies往往是一项复杂而繁琐的任务。幸运的是,我们有了一款强大的开源工具——chrome-cookies-secure,它能够轻松地提取Google Chrome中的加密Cookies,为我们的日常工作带来了极大的便利。
一、项目介绍
chrome-cookies-secure是一款专用于从Mac OS X、Windows或Linux系统上的Google Chrome浏览器中提取加密Cookies的Node.js库。无论是开发者还是自动化工程师,都可以利用该库来获取特定URL下的Cookies信息,从而简化了许多原本复杂的操作流程。
二、项目技术分析
该项目的核心功能在于其API——getCookies,它接受一个完全限定的URL以及可选的格式参数,返回一系列格式化的Cookies数据。支持多种输出格式,如curl、jar(兼容于request)、set-cookie、header、puppeteer和默认的object格式,这大大增加了库的灵活性和适用性。此外,通过遵循网络标准RFC 6265关于Cookie顺序的规定,确保了获取结果的一致性和正确性。
三、项目及技术应用场景
应用场景示例:
- Web自动化测试:结合Puppeteer进行无头浏览器的Cookie注入,以实现更真实的自动化浏览行为。
- 后端开发:利用
request等HTTP客户端库时,可以方便地将Chrome中登录状态的Cookies应用到请求头中,避免重复登录。 - 数据分析:快速访问已登陆账户的数据,无需手动切换登录状态即可获取相关数据,提高效率。
具体实例展示:
1. 基础使用
简单的调用getCookies函数,即能获取指定URL的Cookies对象。
const chrome = require('chrome-cookies-secure');
chrome.getCookies('https://www.example.com/', function(err, cookies) {
if (err) throw err;
console.log(cookies);
});
2. 结合request库
当需要使用request发送带Cookies的请求时,可通过指定jar格式来直接加载。
const request = require('request');
const chrome = require('chrome-cookies-secure');
chrome.getCookies('https://www.example.com/', 'jar', function(err, jar) {
request({url: 'https://www.example.com/', jar: jar}, function (err, response, body) {
if (err) throw err;
console.log(body);
});
});
3. Puppeteer集成
对于那些希望在真实浏览器环境中执行脚本的开发者,chrome-cookies-secure同样提供了无缝对接puppeteer的方式。
const chrome = require('chrome-cookies-secure');
const puppeteer = require('puppeteer');
// 获取Cookies并加载至Puppeteer页面
getCookies(url, function(cookies) {
const browser = await puppeteer.launch();
const page = await browser.newPage();
page.setCookie(...cookies).then(() => {
browser.close();
});
});
四、项目特点
- 广泛的平台支持:跨Mac OS X、Windows和Linux三大操作系统环境。
- 灵活多样的输出格式:满足不同场景下对Cookies格式的需求。
- 简易的API接口:直观明了的功能设计,易于上手。
- 良好的性能表现:快速准确地读取和解析Chrome存储的Cookies,有效提升工作效率。
总而言之,chrome-cookies-secure凭借其强大且实用的功能,在Web开发和自动化测试等领域展现出了巨大的潜力与价值。无论是初学者还是资深专家,都能够在各自的项目中找到这款工具的用武之地,极大地提高了工作的便捷性和效率。赶快加入体验,让你的工作更加得心应手!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00