acme.sh项目在Synology DSM上更新证书失败问题分析与解决
问题背景
在使用acme.sh项目为Synology DSM设备更新SSL证书时,用户遇到了证书更新失败的问题。错误信息显示"Unable to update certificate, got error response: {"error":{"code":5510},"success":false}"。该问题发生在使用DNS验证方式获取Let's Encrypt证书后,尝试将证书部署到Synology DSM系统时。
问题现象分析
从详细的调试日志中可以看出,证书获取过程本身是成功的,但在部署阶段出现了问题。具体表现为:
-
证书签发流程正常完成,包括:
- 成功创建账户密钥
- 完成域名验证(DNS验证方式)
- 获取到有效的证书
-
部署阶段出现问题:
- 能够成功登录Synology DSM系统
- 能够获取现有证书列表
- 但在尝试导入新证书时返回5510错误代码
根本原因探究
通过分析日志和用户后续的解决方案,可以推断出问题的根本原因:
-
证书文件不完整:在自动执行流程中,acme.sh可能没有正确生成或传递所有必要的证书文件(包括证书链和CA证书)。
-
文件生成时机问题:自动执行时,某些证书文件(如.cer、fullchain.cer和ca.cer)可能尚未完全生成就被尝试部署。
-
同步问题:在快速执行的自动化流程中,文件系统写入操作可能尚未完成就被后续部署步骤读取。
解决方案
用户最终通过以下手动分步执行的方式解决了问题:
-
分步执行证书获取:
docker exec acme acme.sh --force --log --issue --server letsencrypt --dns dns_cf --dnssleep 120 -d example.com -d *.example.com -
等待证书文件完整生成:
- 确认目录中生成了所有必要文件:
- example.com.conf
- example.com.csr
- example.com.csr.conf
- example.com.key
- example.com.cer
- fullchain.cer
- ca.cer
- 确认目录中生成了所有必要文件:
-
执行部署命令:
docker exec acme acme.sh --deploy -d example.com -d *.example.com --deploy-hook synology_dsm
技术建议
对于在Synology DSM上使用acme.sh部署证书的用户,建议:
-
检查证书文件完整性:在执行部署前,确保以下文件已生成:
- 私钥文件(.key)
- 证书文件(.cer)
- 完整证书链(fullchain.cer)
- CA证书(ca.cer)
-
增加延迟:在issue和deploy命令之间增加适当延迟,确保文件系统操作完成。
-
手动验证:首次部署时,可考虑手动分步执行以验证流程。
-
错误代码处理:Synology DSM API返回的5510错误通常表示证书数据不完整或格式不正确,遇到此错误时应首先检查证书文件。
总结
acme.sh与Synology DSM的集成在自动化流程中可能会遇到时序问题导致的证书部署失败。通过分步执行和确保文件完整性,可以有效解决此类问题。对于生产环境,建议在自动化脚本中加入适当的延迟和完整性检查,以确保部署流程的可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00